Improving Generalization of ML-Based IDS With Lifecycle-Based Dataset, Auto-Learning Features, and Deep Learning

Didik Sudyana;Ying-Dar Lin;Miel Verkerken;Ren-Hung Hwang;Yuan-Cheng Lai;Laurens D’Hooge;Tim Wauters;Bruno Volckaert;Filip De Turck
{"title":"Improving Generalization of ML-Based IDS With Lifecycle-Based Dataset, Auto-Learning Features, and Deep Learning","authors":"Didik Sudyana;Ying-Dar Lin;Miel Verkerken;Ren-Hung Hwang;Yuan-Cheng Lai;Laurens D’Hooge;Tim Wauters;Bruno Volckaert;Filip De Turck","doi":"10.1109/TMLCN.2024.3402158","DOIUrl":null,"url":null,"abstract":"During the past 10 years, researchers have extensively explored the use of machine learning (ML) in enhancing network intrusion detection systems (IDS). While many studies focused on improving accuracy of ML-based IDS, true effectiveness lies in robust generalization: the ability to classify unseen data accurately. Many existing models train and test on the same dataset, failing to represent the real unseen scenarios. Others who train and test using different datasets often struggle to generalize effectively. This study emphasizes the improvement of generalization through a novel composite approach involving the use of a lifecycle-based dataset (characterizing the attack as sequences of techniques), automatic feature learning (auto-learning), and a CNN-based deep learning model. The established model is tested on five public datasets to assess its generalization performance. The proposed approach demonstrates outstanding generalization performance, achieving an average F1 score of 0.85 and a recall of 0.94. This significantly outperforms the 0.56 and 0.42 averages recall achieved by attack-based datasets using CIC-IDS-2017 and CIC-IDS-2018 as training data, respectively. Furthermore, auto-learning features boost the F1 score by 0.2 compared to traditional statistical features. Overall, the efforts have resulted in significant advancements in model generalization, offering a more robust strategy for addressing intrusion detection challenges.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"645-662"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10531223/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During the past 10 years, researchers have extensively explored the use of machine learning (ML) in enhancing network intrusion detection systems (IDS). While many studies focused on improving accuracy of ML-based IDS, true effectiveness lies in robust generalization: the ability to classify unseen data accurately. Many existing models train and test on the same dataset, failing to represent the real unseen scenarios. Others who train and test using different datasets often struggle to generalize effectively. This study emphasizes the improvement of generalization through a novel composite approach involving the use of a lifecycle-based dataset (characterizing the attack as sequences of techniques), automatic feature learning (auto-learning), and a CNN-based deep learning model. The established model is tested on five public datasets to assess its generalization performance. The proposed approach demonstrates outstanding generalization performance, achieving an average F1 score of 0.85 and a recall of 0.94. This significantly outperforms the 0.56 and 0.42 averages recall achieved by attack-based datasets using CIC-IDS-2017 and CIC-IDS-2018 as training data, respectively. Furthermore, auto-learning features boost the F1 score by 0.2 compared to traditional statistical features. Overall, the efforts have resulted in significant advancements in model generalization, offering a more robust strategy for addressing intrusion detection challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于生命周期的数据集、自动学习特征和深度学习提高基于 ML 的 IDS 的通用性
在过去 10 年中,研究人员广泛探索了如何利用机器学习(ML)来增强网络入侵检测系统(IDS)。虽然许多研究侧重于提高基于 ML 的 IDS 的准确性,但真正的有效性在于强大的泛化能力:对未见数据进行准确分类的能力。许多现有模型在相同的数据集上进行训练和测试,无法代表真实的未知场景。其他使用不同数据集进行训练和测试的模型往往难以有效地泛化。本研究强调通过一种新颖的复合方法来提高泛化能力,这种方法涉及使用基于生命周期的数据集(将攻击表征为技术序列)、自动特征学习(自动学习)和基于 CNN 的深度学习模型。已建立的模型在五个公共数据集上进行了测试,以评估其泛化性能。所提出的方法展示了出色的泛化性能,平均 F1 得分为 0.85,召回率为 0.94。这明显优于使用 CIC-IDS-2017 和 CIC-IDS-2018 作为训练数据的基于攻击的数据集分别取得的 0.56 和 0.42 的平均召回率。此外,与传统统计特征相比,自动学习特征将 F1 分数提高了 0.2。总体而言,这些努力在模型泛化方面取得了显著进步,为应对入侵检测挑战提供了更稳健的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynchronous Real-Time Federated Learning for Anomaly Detection in Microservice Cloud Applications Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications Multi-Agent Reinforcement Learning With Action Masking for UAV-Enabled Mobile Communications Online Learning for Intelligent Thermal Management of Interference-Coupled and Passively Cooled Base Stations Robust and Lightweight Modeling of IoT Network Behaviors From Raw Traffic Packets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1