{"title":"Equivalence of measures and stochastic equations of hydrodynamic theory of plasma","authors":"Artur V. Dmitrenko","doi":"10.1007/s00161-024-01304-5","DOIUrl":null,"url":null,"abstract":"<div><p>Stochastic equations of hydrodynamic theory of plasma are presened. The article shows that for transfer processes in liquid and gas, on the one hand, and in plasma, on the other hand, there exist sets of stochastic differential equations for substantial quantities based on the equality of measures between deterministic motion and random motion. It is shown that the application of these stochastic equations makes it possible to obtain new theoretical solutions for the occurrence of turbulence also for a plasma as a result of its heating in an external electric field instead of only for a classical gas, as it was proved previously. Theoretical solutions for the conductivity of turbulent plasma during its heating in an external electric field are considered. At a first time taking into account the turbulence parameters theoretical relations for the electron drift velocity and corresponding relations for electron mobility, for the frequency of electron collisions, and for the Coulomb integral are obtained. All theoretical relations are applied to calculate the conductivity during the turbulent heating of plasma in an electric field. Here experiments with hydrogen plasma are being considered. The theoretical explanation of the cause for the existence of a constant conductivity in the field of strength <span>\\(E = 0.6-19\\)</span> V/cm and its fall at <span>\\(19<E<100\\)</span> V/cm is given. The calculated dependences of plasma conductivity are in satisfactory agreement with experimental data at the electric-field strength in the turbulent region <span>\\(E = 0.6-100\\)</span> V/cm and in the region <span>\\(E < 0.6\\)</span> V/cm.The equation for the critical electric-field strength is presented.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 4","pages":"911 - 934"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01304-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic equations of hydrodynamic theory of plasma are presened. The article shows that for transfer processes in liquid and gas, on the one hand, and in plasma, on the other hand, there exist sets of stochastic differential equations for substantial quantities based on the equality of measures between deterministic motion and random motion. It is shown that the application of these stochastic equations makes it possible to obtain new theoretical solutions for the occurrence of turbulence also for a plasma as a result of its heating in an external electric field instead of only for a classical gas, as it was proved previously. Theoretical solutions for the conductivity of turbulent plasma during its heating in an external electric field are considered. At a first time taking into account the turbulence parameters theoretical relations for the electron drift velocity and corresponding relations for electron mobility, for the frequency of electron collisions, and for the Coulomb integral are obtained. All theoretical relations are applied to calculate the conductivity during the turbulent heating of plasma in an electric field. Here experiments with hydrogen plasma are being considered. The theoretical explanation of the cause for the existence of a constant conductivity in the field of strength \(E = 0.6-19\) V/cm and its fall at \(19<E<100\) V/cm is given. The calculated dependences of plasma conductivity are in satisfactory agreement with experimental data at the electric-field strength in the turbulent region \(E = 0.6-100\) V/cm and in the region \(E < 0.6\) V/cm.The equation for the critical electric-field strength is presented.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.