Rohin McIntosh, Arthur Goetschy, Nicholas Bender, Alexey Yamilov, Chia Wei Hsu, Hasan Yılmaz, Hui Cao
{"title":"Delivering broadband light deep inside diffusive media","authors":"Rohin McIntosh, Arthur Goetschy, Nicholas Bender, Alexey Yamilov, Chia Wei Hsu, Hasan Yılmaz, Hui Cao","doi":"10.1038/s41566-024-01446-7","DOIUrl":null,"url":null,"abstract":"Wavefront shaping enables the targeted delivery of coherent light into random-scattering media, such as biological tissue, by the constructive interference of scattered waves. However, broadband waves have short coherence times, weakening the interference effect. Here we introduce a broadband deposition matrix that identifies a single input wavefront that maximizes the broadband energy delivered to an extended target deep inside a diffusive system. We experimentally demonstrate that long-range spatial and spectral correlations result in sixfold energy enhancement for targets containing 1,700 speckle grains and located at a depth of up to ten transport mean free paths, even when the coherence time is an order of magnitude shorter than the diffusion dwell time of light in the scattering sample. In the broadband (fast decoherence) limit, enhancement of energy delivery to extended targets becomes nearly independent of the target depth and dissipation. Our experiments, numerical simulations and analytic theory establish the fundamental limit for broadband energy delivery deep into a diffusive system, which has important consequences for practical applications. Owing to spectral long-range correlation, broadband energy can be delivered to extended targets deep inside a multiple-scattering system, greatly broadening the scope of controlling wave transport in disordered systems.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 7","pages":"744-750"},"PeriodicalIF":32.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01446-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wavefront shaping enables the targeted delivery of coherent light into random-scattering media, such as biological tissue, by the constructive interference of scattered waves. However, broadband waves have short coherence times, weakening the interference effect. Here we introduce a broadband deposition matrix that identifies a single input wavefront that maximizes the broadband energy delivered to an extended target deep inside a diffusive system. We experimentally demonstrate that long-range spatial and spectral correlations result in sixfold energy enhancement for targets containing 1,700 speckle grains and located at a depth of up to ten transport mean free paths, even when the coherence time is an order of magnitude shorter than the diffusion dwell time of light in the scattering sample. In the broadband (fast decoherence) limit, enhancement of energy delivery to extended targets becomes nearly independent of the target depth and dissipation. Our experiments, numerical simulations and analytic theory establish the fundamental limit for broadband energy delivery deep into a diffusive system, which has important consequences for practical applications. Owing to spectral long-range correlation, broadband energy can be delivered to extended targets deep inside a multiple-scattering system, greatly broadening the scope of controlling wave transport in disordered systems.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.