Pub Date : 2023-10-19DOI: 10.1038/s41566-023-01311-z
B. Malaca, M. Pardal, D. Ramsey, J. R. Pierce, K. Weichman, I. A. Andriyash, W. B. Mori, J. P. Palastro, R. A. Fonseca, J. Vieira
Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations. A new conceptual approach to light generation involving an ensemble of light-emitting charges may result in more compact superradiant light sources.
{"title":"Coherence and superradiance from a plasma-based quasiparticle accelerator","authors":"B. Malaca, M. Pardal, D. Ramsey, J. R. Pierce, K. Weichman, I. A. Andriyash, W. B. Mori, J. P. Palastro, R. A. Fonseca, J. Vieira","doi":"10.1038/s41566-023-01311-z","DOIUrl":"10.1038/s41566-023-01311-z","url":null,"abstract":"Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations. A new conceptual approach to light generation involving an ensemble of light-emitting charges may result in more compact superradiant light sources.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 1","pages":"39-45"},"PeriodicalIF":35.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1038/s41566-023-01305-x
Shan Liu, Christian Grech, Marc Guetg, Suren Karabekyan, Vitali Kocharyan, Naresh Kujala, Christoph Lechner, Tianyun Long, Najmeh Mirian, Weilun Qin, Svitozar Serkez, Sergey Tomin, Jiawei Yan, Suren Abeghyan, Jayson Anton, Vladimir Blank, Ulrike Boesenberg, Frank Brinker, Ye Chen, Winfried Decking, Xiaohao Dong, Steve Kearney, Daniele La Civita, Anders Madsen, Theophilos Maltezopoulos, Angel Rodriguez-Fernandez, Evgeni Saldin, Liubov Samoylova, Matthias Scholz, Harald Sinn, Vivien Sleziona, Deming Shu, Takanori Tanikawa, Sergey Terentiev, Andrei Trebushinin, Thomas Tschentscher, Maurizio Vannoni, Torsten Wohlenberg, Mikhail Yakopov, Gianluca Geloni
High-resolution X-ray spectroscopy in the sub-nanosecond to femtosecond time range requires ultrashort X-ray pulses and a spectral X-ray flux considerably larger than that presently available. X-ray free-electron laser (XFEL) radiation from hard X-ray self-seeding (HXRSS) setups has been demonstrated in the past and offers the necessary peak flux properties. So far, these systems could not provide high repetition rates enabling a high average flux. We report the results for a cascaded HXRSS system installed at the European XFEL, currently the only operating high-repetition-rate hard X-ray XFEL facility worldwide. A high repetition rate, combined with HXRSS, allows the generation of millijoule-level pulses in the photon energy range of 6–14 keV with a bandwidth of around 1 eV (corresponding to about 1 mJ eV–1 peak spectral density) at the rate of ten trains per second, each train including hundreds of pulses arriving at a megahertz repetition rate. At 2.25 MHz repetition rate and photon energies in the 6–7 keV range, we observed and characterized the heat-load effects on the HXRSS crystals, substantially altering the spectra of subsequent X-ray pulses. We demonstrated that our cascaded self-seeding scheme reduces this detrimental effect to below the detection level. This opens up exciting new possibilities in a wide range of scientific fields employing ultrafast X-ray spectroscopy, scattering and imaging techniques. A cascaded hard X-ray self-seeding system is demonstrated at the European X-ray free-electron laser. The setup enables millijoule-level pulses in the photon energy range of 6–14 keV at the rate of ten trains per second, with each train including hundreds of pulses arriving at a megahertz repetition rate.
亚纳秒到飞秒时间范围内的高分辨率 X 射线光谱学需要超短 X 射线脉冲和远大于目前可用的 X 射线光谱通量。来自硬 X 射线自播撒(HXRSS)装置的 X 射线自由电子激光(XFEL)辐射已在过去得到证实,并提供了必要的峰值通量特性。到目前为止,这些系统还不能提供高重复率,从而无法实现高平均通量。我们报告了在欧洲 XFEL 上安装的级联 HXRSS 系统的结果,该系统是目前全球唯一正在运行的高重复率硬 X 射线 XFEL 设备。高重复率与 HXRSS 相结合,可以在 6-14 keV 的光子能量范围内产生带宽约为 1 eV 的毫焦耳级脉冲(峰值光谱密度约为 1 mJ eV-1),每秒十列,每列包括数百个以百万赫兹重复率到达的脉冲。在 2.25 MHz 的重复频率和 6-7 keV 的光子能量范围内,我们观察到并描述了 HXRSS 晶体的热负荷效应,它极大地改变了后续 X 射线脉冲的光谱。我们证明,我们的级联自播种方案可以将这种有害效应降低到检测水平以下。这为采用超快 X 射线光谱学、散射和成像技术的广泛科学领域带来了令人兴奋的新可能性。欧洲 X 射线自由电子激光器演示了级联硬 X 射线自馈源系统。该装置能够以每秒十列的速度在 6-14 keV 的光子能量范围内产生毫焦耳级脉冲,每列脉冲包括数百个以百万赫兹重复率到达的脉冲。
{"title":"Cascaded hard X-ray self-seeded free-electron laser at megahertz repetition rate","authors":"Shan Liu, Christian Grech, Marc Guetg, Suren Karabekyan, Vitali Kocharyan, Naresh Kujala, Christoph Lechner, Tianyun Long, Najmeh Mirian, Weilun Qin, Svitozar Serkez, Sergey Tomin, Jiawei Yan, Suren Abeghyan, Jayson Anton, Vladimir Blank, Ulrike Boesenberg, Frank Brinker, Ye Chen, Winfried Decking, Xiaohao Dong, Steve Kearney, Daniele La Civita, Anders Madsen, Theophilos Maltezopoulos, Angel Rodriguez-Fernandez, Evgeni Saldin, Liubov Samoylova, Matthias Scholz, Harald Sinn, Vivien Sleziona, Deming Shu, Takanori Tanikawa, Sergey Terentiev, Andrei Trebushinin, Thomas Tschentscher, Maurizio Vannoni, Torsten Wohlenberg, Mikhail Yakopov, Gianluca Geloni","doi":"10.1038/s41566-023-01305-x","DOIUrl":"10.1038/s41566-023-01305-x","url":null,"abstract":"High-resolution X-ray spectroscopy in the sub-nanosecond to femtosecond time range requires ultrashort X-ray pulses and a spectral X-ray flux considerably larger than that presently available. X-ray free-electron laser (XFEL) radiation from hard X-ray self-seeding (HXRSS) setups has been demonstrated in the past and offers the necessary peak flux properties. So far, these systems could not provide high repetition rates enabling a high average flux. We report the results for a cascaded HXRSS system installed at the European XFEL, currently the only operating high-repetition-rate hard X-ray XFEL facility worldwide. A high repetition rate, combined with HXRSS, allows the generation of millijoule-level pulses in the photon energy range of 6–14 keV with a bandwidth of around 1 eV (corresponding to about 1 mJ eV–1 peak spectral density) at the rate of ten trains per second, each train including hundreds of pulses arriving at a megahertz repetition rate. At 2.25 MHz repetition rate and photon energies in the 6–7 keV range, we observed and characterized the heat-load effects on the HXRSS crystals, substantially altering the spectra of subsequent X-ray pulses. We demonstrated that our cascaded self-seeding scheme reduces this detrimental effect to below the detection level. This opens up exciting new possibilities in a wide range of scientific fields employing ultrafast X-ray spectroscopy, scattering and imaging techniques. A cascaded hard X-ray self-seeding system is demonstrated at the European X-ray free-electron laser. The setup enables millijoule-level pulses in the photon energy range of 6–14 keV at the rate of ten trains per second, with each train including hundreds of pulses arriving at a megahertz repetition rate.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 11","pages":"984-991"},"PeriodicalIF":35.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01305-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1038/s41566-023-01295-w
Sebastian Borówka, Uliana Pylypenko, Mateusz Mazelanik, Michał Parniak
The coupling of microwave and optical systems presents an immense challenge due to the natural incompatibility of energies, but potential applications range from optical interconnects for quantum computers to next-generation quantum microwave sensors, detectors and coherent imagers. Several of the engineered platforms that have emerged are constrained by specific conditions, such as cryogenic environments, impulse protocols or narrowband fields. Here we employ Rydberg atoms that allow the wideband coupling of optical and microwave photons at room temperature with the use of a modest set-up. We present continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal using an ensemble of Rydberg atoms via a free-space six-wave mixing process designed to minimize noise interference from any nearby frequencies. The Rydberg photonic converter exhibits a conversion dynamic range of 57 dB and a wide conversion bandwidth of 16 MHz. Using photon counting, we demonstrate the readout of photons of free-space 300 K thermal background radiation at 1.59 nV cm−1 rad−1/2 s−1/2 (3.98 nV cm−1 Hz−1/2) with a sensitivity down to 3.8 K of noise-equivalent temperature, allowing us to observe Hanbury Brown and Twiss interference of microwave photons. Continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal is demonstrated by using Rydberg atoms at room temperature. The conversion bandwidth is 16 MHz and the conversion dynamic range is 57 dB, descending down to 3.8 K noise-equivalent temperature.
{"title":"Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms","authors":"Sebastian Borówka, Uliana Pylypenko, Mateusz Mazelanik, Michał Parniak","doi":"10.1038/s41566-023-01295-w","DOIUrl":"10.1038/s41566-023-01295-w","url":null,"abstract":"The coupling of microwave and optical systems presents an immense challenge due to the natural incompatibility of energies, but potential applications range from optical interconnects for quantum computers to next-generation quantum microwave sensors, detectors and coherent imagers. Several of the engineered platforms that have emerged are constrained by specific conditions, such as cryogenic environments, impulse protocols or narrowband fields. Here we employ Rydberg atoms that allow the wideband coupling of optical and microwave photons at room temperature with the use of a modest set-up. We present continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal using an ensemble of Rydberg atoms via a free-space six-wave mixing process designed to minimize noise interference from any nearby frequencies. The Rydberg photonic converter exhibits a conversion dynamic range of 57 dB and a wide conversion bandwidth of 16 MHz. Using photon counting, we demonstrate the readout of photons of free-space 300 K thermal background radiation at 1.59 nV cm−1 rad−1/2 s−1/2 (3.98 nV cm−1 Hz−1/2) with a sensitivity down to 3.8 K of noise-equivalent temperature, allowing us to observe Hanbury Brown and Twiss interference of microwave photons. Continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal is demonstrated by using Rydberg atoms at room temperature. The conversion bandwidth is 16 MHz and the conversion dynamic range is 57 dB, descending down to 3.8 K noise-equivalent temperature.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 1","pages":"32-38"},"PeriodicalIF":35.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01295-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1038/s41566-023-01288-9
Hrvoje Buljan, Zhigang Chen
Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.
{"title":"Spin-selective transitions between quantum Hall states","authors":"Hrvoje Buljan, Zhigang Chen","doi":"10.1038/s41566-023-01288-9","DOIUrl":"10.1038/s41566-023-01288-9","url":null,"abstract":"Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"838-840"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1038/s41566-023-01297-8
David Pile
{"title":"Turning night into day","authors":"David Pile","doi":"10.1038/s41566-023-01297-8","DOIUrl":"10.1038/s41566-023-01297-8","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"843-843"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1038/s41566-023-01301-1
Giampaolo Pitruzzello
Light sheet microscopy offers rapid 3D imaging of biological specimens while limiting photodamage. Nature Photonics spoke with Elizabeth Hillman of Columbia University about its capabilities, promising applications and present limitations.
{"title":"Sheets of light illuminate life sciences","authors":"Giampaolo Pitruzzello","doi":"10.1038/s41566-023-01301-1","DOIUrl":"10.1038/s41566-023-01301-1","url":null,"abstract":"Light sheet microscopy offers rapid 3D imaging of biological specimens while limiting photodamage. Nature Photonics spoke with Elizabeth Hillman of Columbia University about its capabilities, promising applications and present limitations.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"831-832"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01301-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.1038/s41566-023-01302-0
Enrico Allaria, Giovanni De Ninno
The demonstration of a low-loss diamond mirror cavity that can temporally store X-ray pulses brings hope for a future generation of X-ray free electron lasers.
低损耗金刚石镜面腔的展示为未来新一代 X 射线自由电子激光器带来了希望。
{"title":"A step towards cavity-based X-ray free electron lasers","authors":"Enrico Allaria, Giovanni De Ninno","doi":"10.1038/s41566-023-01302-0","DOIUrl":"10.1038/s41566-023-01302-0","url":null,"abstract":"The demonstration of a low-loss diamond mirror cavity that can temporally store X-ray pulses brings hope for a future generation of X-ray free electron lasers.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"841-842"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.1038/s41566-023-01281-2
Osman S. Cifci, Mikayla A. Yoder, Lu Xu, Hao Chen, Christopher J. Beck, Junwen He, Brent A. Koscher, Zachary Nett, Joseph K. Swabeck, A. Paul Alivisatos, Ralph G. Nuzzo, Paul V. Braun
A key display characteristic is its efficiency (emitted light power divided by input power). Although display efficiencies are being improved through emissive (for example, quantum dot and organic light-emitting) display designs, which remove the highly inefficient colour filters found in traditional liquid crystal displays, polarization filters, which block about 50% light, remain necessary to inhibit ambient light reflection. We introduce a luminescent concentrator design to replace both colour and polarization filters. Narrow-band, large-Stokes-shift, CdSe/CdS quantum dot emitters are embedded in a luminescent concentrator pixel element with a small top aperture. The remainder of the top surface is coated black, reducing ambient light reflection. A single pixel demonstrates an extraction efficiency of 40.9% from a pixel with an aperture opening of 11.0%. A simple proof-of-concept multipixel array is demonstrated. Inefficient filters and overall efficiency are issues for display technology. Luminescent concentrator pixels have been used with CdSe/CdS quantum dot emitters, which enable both colour and polarization filtering, as well as nearly 41% extraction efficiency.
{"title":"Luminescent concentrator design for displays with high ambient contrast and efficiency","authors":"Osman S. Cifci, Mikayla A. Yoder, Lu Xu, Hao Chen, Christopher J. Beck, Junwen He, Brent A. Koscher, Zachary Nett, Joseph K. Swabeck, A. Paul Alivisatos, Ralph G. Nuzzo, Paul V. Braun","doi":"10.1038/s41566-023-01281-2","DOIUrl":"10.1038/s41566-023-01281-2","url":null,"abstract":"A key display characteristic is its efficiency (emitted light power divided by input power). Although display efficiencies are being improved through emissive (for example, quantum dot and organic light-emitting) display designs, which remove the highly inefficient colour filters found in traditional liquid crystal displays, polarization filters, which block about 50% light, remain necessary to inhibit ambient light reflection. We introduce a luminescent concentrator design to replace both colour and polarization filters. Narrow-band, large-Stokes-shift, CdSe/CdS quantum dot emitters are embedded in a luminescent concentrator pixel element with a small top aperture. The remainder of the top surface is coated black, reducing ambient light reflection. A single pixel demonstrates an extraction efficiency of 40.9% from a pixel with an aperture opening of 11.0%. A simple proof-of-concept multipixel array is demonstrated. Inefficient filters and overall efficiency are issues for display technology. Luminescent concentrator pixels have been used with CdSe/CdS quantum dot emitters, which enable both colour and polarization filtering, as well as nearly 41% extraction efficiency.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"872-877"},"PeriodicalIF":35.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44383680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.1038/s41566-023-01285-y
Activity in using photonics for subsea wireless communications and power generation is starting to make waves.
将光子技术用于海底无线通信和发电的活动开始掀起波澜。
{"title":"Underwater opportunities","authors":"","doi":"10.1038/s41566-023-01285-y","DOIUrl":"10.1038/s41566-023-01285-y","url":null,"abstract":"Activity in using photonics for subsea wireless communications and power generation is starting to make waves.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 9","pages":"733-733"},"PeriodicalIF":35.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01285-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48968875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}