首页 > 最新文献

Nature Photonics最新文献

英文 中文
Coherence and superradiance from a plasma-based quasiparticle accelerator 等离子体准粒子加速器的相干性和超辐照度
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-10-19 DOI: 10.1038/s41566-023-01311-z
B. Malaca, M. Pardal, D. Ramsey, J. R. Pierce, K. Weichman, I. A. Andriyash, W. B. Mori, J. P. Palastro, R. A. Fonseca, J. Vieira
Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations. A new conceptual approach to light generation involving an ensemble of light-emitting charges may result in more compact superradiant light sources.
相干光源(如自由电子激光器)为生物学、化学和物理学研究提供了明亮的光束。然而,要提高这些光源的亮度,需要逐渐增大仪器的体积,最大的例子如斯坦福大学的林纳相干光源(Linac Coherent Light Source)长达几千米。如果能克服这种扩展趋势,使大学、医院和工业实验室都能使用小巧、明亮的光源,那将是一场变革。在这里,我们通过重新思考辐射物理学的基本原理来解决这个问题。我们工作的核心是引入基于准粒子的光源,这种光源依靠发光电荷集合的集体宏观运动,以单个电荷不符合物理学原理的方式演化和辐射。其基本概念允许在新的配置(如等离子加速器)中实现时间相干性和超辐照度,提供具有有趣特性和清晰实验特征的辐射,波长跨越近十个倍频程,从太赫兹到极紫外。准粒子方法非常简单,适合在现有的激光和加速器设施上进行实验演示,也可扩展到非线性光学配置等其他情况。涉及发光电荷集合的一种新的光产生概念方法可能会产生更紧凑的超辐射光源。
{"title":"Coherence and superradiance from a plasma-based quasiparticle accelerator","authors":"B. Malaca, M. Pardal, D. Ramsey, J. R. Pierce, K. Weichman, I. A. Andriyash, W. B. Mori, J. P. Palastro, R. A. Fonseca, J. Vieira","doi":"10.1038/s41566-023-01311-z","DOIUrl":"10.1038/s41566-023-01311-z","url":null,"abstract":"Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations. A new conceptual approach to light generation involving an ensemble of light-emitting charges may result in more compact superradiant light sources.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 1","pages":"39-45"},"PeriodicalIF":35.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascaded hard X-ray self-seeded free-electron laser at megahertz repetition rate 百万赫兹重复频率的级联硬 X 射线自播自由电子激光器
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-10-16 DOI: 10.1038/s41566-023-01305-x
Shan Liu, Christian Grech, Marc Guetg, Suren Karabekyan, Vitali Kocharyan, Naresh Kujala, Christoph Lechner, Tianyun Long, Najmeh Mirian, Weilun Qin, Svitozar Serkez, Sergey Tomin, Jiawei Yan, Suren Abeghyan, Jayson Anton, Vladimir Blank, Ulrike Boesenberg, Frank Brinker, Ye Chen, Winfried Decking, Xiaohao Dong, Steve Kearney, Daniele La Civita, Anders Madsen, Theophilos Maltezopoulos, Angel Rodriguez-Fernandez, Evgeni Saldin, Liubov Samoylova, Matthias Scholz, Harald Sinn, Vivien Sleziona, Deming Shu, Takanori Tanikawa, Sergey Terentiev, Andrei Trebushinin, Thomas Tschentscher, Maurizio Vannoni, Torsten Wohlenberg, Mikhail Yakopov, Gianluca Geloni
High-resolution X-ray spectroscopy in the sub-nanosecond to femtosecond time range requires ultrashort X-ray pulses and a spectral X-ray flux considerably larger than that presently available. X-ray free-electron laser (XFEL) radiation from hard X-ray self-seeding (HXRSS) setups has been demonstrated in the past and offers the necessary peak flux properties. So far, these systems could not provide high repetition rates enabling a high average flux. We report the results for a cascaded HXRSS system installed at the European XFEL, currently the only operating high-repetition-rate hard X-ray XFEL facility worldwide. A high repetition rate, combined with HXRSS, allows the generation of millijoule-level pulses in the photon energy range of 6–14 keV with a bandwidth of around 1 eV (corresponding to about 1 mJ eV–1 peak spectral density) at the rate of ten trains per second, each train including hundreds of pulses arriving at a megahertz repetition rate. At 2.25 MHz repetition rate and photon energies in the 6–7 keV range, we observed and characterized the heat-load effects on the HXRSS crystals, substantially altering the spectra of subsequent X-ray pulses. We demonstrated that our cascaded self-seeding scheme reduces this detrimental effect to below the detection level. This opens up exciting new possibilities in a wide range of scientific fields employing ultrafast X-ray spectroscopy, scattering and imaging techniques. A cascaded hard X-ray self-seeding system is demonstrated at the European X-ray free-electron laser. The setup enables millijoule-level pulses in the photon energy range of 6–14 keV at the rate of ten trains per second, with each train including hundreds of pulses arriving at a megahertz repetition rate.
亚纳秒到飞秒时间范围内的高分辨率 X 射线光谱学需要超短 X 射线脉冲和远大于目前可用的 X 射线光谱通量。来自硬 X 射线自播撒(HXRSS)装置的 X 射线自由电子激光(XFEL)辐射已在过去得到证实,并提供了必要的峰值通量特性。到目前为止,这些系统还不能提供高重复率,从而无法实现高平均通量。我们报告了在欧洲 XFEL 上安装的级联 HXRSS 系统的结果,该系统是目前全球唯一正在运行的高重复率硬 X 射线 XFEL 设备。高重复率与 HXRSS 相结合,可以在 6-14 keV 的光子能量范围内产生带宽约为 1 eV 的毫焦耳级脉冲(峰值光谱密度约为 1 mJ eV-1),每秒十列,每列包括数百个以百万赫兹重复率到达的脉冲。在 2.25 MHz 的重复频率和 6-7 keV 的光子能量范围内,我们观察到并描述了 HXRSS 晶体的热负荷效应,它极大地改变了后续 X 射线脉冲的光谱。我们证明,我们的级联自播种方案可以将这种有害效应降低到检测水平以下。这为采用超快 X 射线光谱学、散射和成像技术的广泛科学领域带来了令人兴奋的新可能性。欧洲 X 射线自由电子激光器演示了级联硬 X 射线自馈源系统。该装置能够以每秒十列的速度在 6-14 keV 的光子能量范围内产生毫焦耳级脉冲,每列脉冲包括数百个以百万赫兹重复率到达的脉冲。
{"title":"Cascaded hard X-ray self-seeded free-electron laser at megahertz repetition rate","authors":"Shan Liu, Christian Grech, Marc Guetg, Suren Karabekyan, Vitali Kocharyan, Naresh Kujala, Christoph Lechner, Tianyun Long, Najmeh Mirian, Weilun Qin, Svitozar Serkez, Sergey Tomin, Jiawei Yan, Suren Abeghyan, Jayson Anton, Vladimir Blank, Ulrike Boesenberg, Frank Brinker, Ye Chen, Winfried Decking, Xiaohao Dong, Steve Kearney, Daniele La Civita, Anders Madsen, Theophilos Maltezopoulos, Angel Rodriguez-Fernandez, Evgeni Saldin, Liubov Samoylova, Matthias Scholz, Harald Sinn, Vivien Sleziona, Deming Shu, Takanori Tanikawa, Sergey Terentiev, Andrei Trebushinin, Thomas Tschentscher, Maurizio Vannoni, Torsten Wohlenberg, Mikhail Yakopov, Gianluca Geloni","doi":"10.1038/s41566-023-01305-x","DOIUrl":"10.1038/s41566-023-01305-x","url":null,"abstract":"High-resolution X-ray spectroscopy in the sub-nanosecond to femtosecond time range requires ultrashort X-ray pulses and a spectral X-ray flux considerably larger than that presently available. X-ray free-electron laser (XFEL) radiation from hard X-ray self-seeding (HXRSS) setups has been demonstrated in the past and offers the necessary peak flux properties. So far, these systems could not provide high repetition rates enabling a high average flux. We report the results for a cascaded HXRSS system installed at the European XFEL, currently the only operating high-repetition-rate hard X-ray XFEL facility worldwide. A high repetition rate, combined with HXRSS, allows the generation of millijoule-level pulses in the photon energy range of 6–14 keV with a bandwidth of around 1 eV (corresponding to about 1 mJ eV–1 peak spectral density) at the rate of ten trains per second, each train including hundreds of pulses arriving at a megahertz repetition rate. At 2.25 MHz repetition rate and photon energies in the 6–7 keV range, we observed and characterized the heat-load effects on the HXRSS crystals, substantially altering the spectra of subsequent X-ray pulses. We demonstrated that our cascaded self-seeding scheme reduces this detrimental effect to below the detection level. This opens up exciting new possibilities in a wide range of scientific fields employing ultrafast X-ray spectroscopy, scattering and imaging techniques. A cascaded hard X-ray self-seeding system is demonstrated at the European X-ray free-electron laser. The setup enables millijoule-level pulses in the photon energy range of 6–14 keV at the rate of ten trains per second, with each train including hundreds of pulses arriving at a megahertz repetition rate.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 11","pages":"984-991"},"PeriodicalIF":35.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01305-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms 基于室温雷德堡原子的连续宽带微波-光学转换器
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-10-05 DOI: 10.1038/s41566-023-01295-w
Sebastian Borówka, Uliana Pylypenko, Mateusz Mazelanik, Michał Parniak
The coupling of microwave and optical systems presents an immense challenge due to the natural incompatibility of energies, but potential applications range from optical interconnects for quantum computers to next-generation quantum microwave sensors, detectors and coherent imagers. Several of the engineered platforms that have emerged are constrained by specific conditions, such as cryogenic environments, impulse protocols or narrowband fields. Here we employ Rydberg atoms that allow the wideband coupling of optical and microwave photons at room temperature with the use of a modest set-up. We present continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal using an ensemble of Rydberg atoms via a free-space six-wave mixing process designed to minimize noise interference from any nearby frequencies. The Rydberg photonic converter exhibits a conversion dynamic range of 57 dB and a wide conversion bandwidth of 16 MHz. Using photon counting, we demonstrate the readout of photons of free-space 300 K thermal background radiation at 1.59 nV cm−1 rad−1/2 s−1/2 (3.98 nV cm−1 Hz−1/2) with a sensitivity down to 3.8 K of noise-equivalent temperature, allowing us to observe Hanbury Brown and Twiss interference of microwave photons. Continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal is demonstrated by using Rydberg atoms at room temperature. The conversion bandwidth is 16 MHz and the conversion dynamic range is 57 dB, descending down to 3.8 K noise-equivalent temperature.
由于能量的天然不兼容性,微波和光学系统的耦合是一个巨大的挑战,但其潜在应用范围却很广,从量子计算机的光学互连到下一代量子微波传感器、探测器和相干成像仪。已经出现的一些工程平台受到特定条件的限制,如低温环境、脉冲协议或窄带场。在这里,我们采用了雷德堡原子,只需使用适度的装置,就能在室温下实现光学和微波光子的宽带耦合。我们通过自由空间六波混频过程,将 13.9 GHz 场连续波转换为近红外光信号。雷德堡光子转换器的转换动态范围为 57 dB,转换带宽为 16 MHz。通过光子计数,我们演示了以 1.59 nV cm-1 rad-1/2 s-1/2 (3.98 nV cm-1 Hz-1/2)的灵敏度读出自由空间 300 K 热背景辐射的光子,灵敏度低至 3.8 K 的噪声等效温度,从而使我们能够观察到微波光子的汉伯里-布朗干涉和特维斯干涉。利用室温下的雷德堡原子,演示了 13.9 GHz 场到近红外光信号的连续波转换。转换带宽为 16 MHz,转换动态范围为 57 dB,降到 3.8 K 的噪声等效温度。
{"title":"Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms","authors":"Sebastian Borówka, Uliana Pylypenko, Mateusz Mazelanik, Michał Parniak","doi":"10.1038/s41566-023-01295-w","DOIUrl":"10.1038/s41566-023-01295-w","url":null,"abstract":"The coupling of microwave and optical systems presents an immense challenge due to the natural incompatibility of energies, but potential applications range from optical interconnects for quantum computers to next-generation quantum microwave sensors, detectors and coherent imagers. Several of the engineered platforms that have emerged are constrained by specific conditions, such as cryogenic environments, impulse protocols or narrowband fields. Here we employ Rydberg atoms that allow the wideband coupling of optical and microwave photons at room temperature with the use of a modest set-up. We present continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal using an ensemble of Rydberg atoms via a free-space six-wave mixing process designed to minimize noise interference from any nearby frequencies. The Rydberg photonic converter exhibits a conversion dynamic range of 57 dB and a wide conversion bandwidth of 16 MHz. Using photon counting, we demonstrate the readout of photons of free-space 300 K thermal background radiation at 1.59 nV cm−1 rad−1/2 s−1/2 (3.98 nV cm−1 Hz−1/2) with a sensitivity down to 3.8 K of noise-equivalent temperature, allowing us to observe Hanbury Brown and Twiss interference of microwave photons. Continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal is demonstrated by using Rydberg atoms at room temperature. The conversion bandwidth is 16 MHz and the conversion dynamic range is 57 dB, descending down to 3.8 K noise-equivalent temperature.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 1","pages":"32-38"},"PeriodicalIF":35.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01295-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-selective transitions between quantum Hall states 量子霍尔态之间的自旋选择性跃迁
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-09-29 DOI: 10.1038/s41566-023-01288-9
Hrvoje Buljan, Zhigang Chen
Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.
能够控制光腔中强光-物质相互作用的平台为操纵新出现的光-物质混合体提供了一种具有挑战性但前景广阔的方法。现在,我们已经在二维空穴气体微腔系统中证明了跃迁的自旋选择性,为研究混合激发中的新自旋物理现象铺平了道路。
{"title":"Spin-selective transitions between quantum Hall states","authors":"Hrvoje Buljan, Zhigang Chen","doi":"10.1038/s41566-023-01288-9","DOIUrl":"10.1038/s41566-023-01288-9","url":null,"abstract":"Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"838-840"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turning night into day 将黑夜变成白昼
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-09-29 DOI: 10.1038/s41566-023-01297-8
David Pile
{"title":"Turning night into day","authors":"David Pile","doi":"10.1038/s41566-023-01297-8","DOIUrl":"10.1038/s41566-023-01297-8","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"843-843"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sheets of light illuminate life sciences 光片照亮生命科学
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-09-29 DOI: 10.1038/s41566-023-01301-1
Giampaolo Pitruzzello
Light sheet microscopy offers rapid 3D imaging of biological specimens while limiting photodamage. Nature Photonics spoke with Elizabeth Hillman of Columbia University about its capabilities, promising applications and present limitations.
光片显微镜可对生物标本进行快速三维成像,同时限制光损伤。自然-光子学》杂志采访了哥伦比亚大学的伊丽莎白-希尔曼(Elizabeth Hillman),介绍了光片显微镜的功能、应用前景和目前的局限性。
{"title":"Sheets of light illuminate life sciences","authors":"Giampaolo Pitruzzello","doi":"10.1038/s41566-023-01301-1","DOIUrl":"10.1038/s41566-023-01301-1","url":null,"abstract":"Light sheet microscopy offers rapid 3D imaging of biological specimens while limiting photodamage. Nature Photonics spoke with Elizabeth Hillman of Columbia University about its capabilities, promising applications and present limitations.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"831-832"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01301-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photothermal attogram spectroscopy 光热图谱
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-09-29 DOI: 10.1038/s41566-023-01296-9
Giampaolo Pitruzzello
{"title":"Photothermal attogram spectroscopy","authors":"Giampaolo Pitruzzello","doi":"10.1038/s41566-023-01296-9","DOIUrl":"10.1038/s41566-023-01296-9","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"837-837"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A step towards cavity-based X-ray free electron lasers 向腔基 X 射线自由电子激光器迈进了一步
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-09-29 DOI: 10.1038/s41566-023-01302-0
Enrico Allaria, Giovanni De Ninno
The demonstration of a low-loss diamond mirror cavity that can temporally store X-ray pulses brings hope for a future generation of X-ray free electron lasers.
低损耗金刚石镜面腔的展示为未来新一代 X 射线自由电子激光器带来了希望。
{"title":"A step towards cavity-based X-ray free electron lasers","authors":"Enrico Allaria, Giovanni De Ninno","doi":"10.1038/s41566-023-01302-0","DOIUrl":"10.1038/s41566-023-01302-0","url":null,"abstract":"The demonstration of a low-loss diamond mirror cavity that can temporally store X-ray pulses brings hope for a future generation of X-ray free electron lasers.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"841-842"},"PeriodicalIF":35.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50166368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescent concentrator design for displays with high ambient contrast and efficiency 用于具有高环境对比度和效率的显示器的发光集中器设计
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-08-31 DOI: 10.1038/s41566-023-01281-2
Osman S. Cifci, Mikayla A. Yoder, Lu Xu, Hao Chen, Christopher J. Beck, Junwen He, Brent A. Koscher, Zachary Nett, Joseph K. Swabeck, A. Paul Alivisatos, Ralph G. Nuzzo, Paul V. Braun
A key display characteristic is its efficiency (emitted light power divided by input power). Although display efficiencies are being improved through emissive (for example, quantum dot and organic light-emitting) display designs, which remove the highly inefficient colour filters found in traditional liquid crystal displays, polarization filters, which block about 50% light, remain necessary to inhibit ambient light reflection. We introduce a luminescent concentrator design to replace both colour and polarization filters. Narrow-band, large-Stokes-shift, CdSe/CdS quantum dot emitters are embedded in a luminescent concentrator pixel element with a small top aperture. The remainder of the top surface is coated black, reducing ambient light reflection. A single pixel demonstrates an extraction efficiency of 40.9% from a pixel with an aperture opening of 11.0%. A simple proof-of-concept multipixel array is demonstrated. Inefficient filters and overall efficiency are issues for display technology. Luminescent concentrator pixels have been used with CdSe/CdS quantum dot emitters, which enable both colour and polarization filtering, as well as nearly 41% extraction efficiency.
显示器的一个关键特性是效率(发射光功率除以输入功率)。尽管通过发射型(如量子点和有机发光)显示屏设计,传统液晶显示屏中效率极低的彩色滤光片已被去除,显示屏的效率也在不断提高,但偏振滤光片仍是抑制环境光反射所必需的,偏振滤光片可阻挡约 50%的光线。我们引入了一种发光聚光器设计来取代彩色滤光片和偏振滤光片。窄带、大斯托克斯偏移、镉硒/镉硒量子点发射器被嵌入一个顶部开孔较小的发光聚光像素元件中。上表面的其余部分涂有黑色涂层,以减少环境光反射。单个像素的提取效率为 40.9%,而像素的开孔率为 11.0%。演示了一个简单的概念验证多像素阵列。低效滤光片和整体效率是显示技术面临的问题。发光聚光像素采用了镉硒/镉硒量子点发射器,可实现彩色和偏振过滤,提取效率接近 41%。
{"title":"Luminescent concentrator design for displays with high ambient contrast and efficiency","authors":"Osman S. Cifci, Mikayla A. Yoder, Lu Xu, Hao Chen, Christopher J. Beck, Junwen He, Brent A. Koscher, Zachary Nett, Joseph K. Swabeck, A. Paul Alivisatos, Ralph G. Nuzzo, Paul V. Braun","doi":"10.1038/s41566-023-01281-2","DOIUrl":"10.1038/s41566-023-01281-2","url":null,"abstract":"A key display characteristic is its efficiency (emitted light power divided by input power). Although display efficiencies are being improved through emissive (for example, quantum dot and organic light-emitting) display designs, which remove the highly inefficient colour filters found in traditional liquid crystal displays, polarization filters, which block about 50% light, remain necessary to inhibit ambient light reflection. We introduce a luminescent concentrator design to replace both colour and polarization filters. Narrow-band, large-Stokes-shift, CdSe/CdS quantum dot emitters are embedded in a luminescent concentrator pixel element with a small top aperture. The remainder of the top surface is coated black, reducing ambient light reflection. A single pixel demonstrates an extraction efficiency of 40.9% from a pixel with an aperture opening of 11.0%. A simple proof-of-concept multipixel array is demonstrated. Inefficient filters and overall efficiency are issues for display technology. Luminescent concentrator pixels have been used with CdSe/CdS quantum dot emitters, which enable both colour and polarization filtering, as well as nearly 41% extraction efficiency.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"872-877"},"PeriodicalIF":35.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44383680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Underwater opportunities 水下机会
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-08-31 DOI: 10.1038/s41566-023-01285-y
Activity in using photonics for subsea wireless communications and power generation is starting to make waves.
将光子技术用于海底无线通信和发电的活动开始掀起波澜。
{"title":"Underwater opportunities","authors":"","doi":"10.1038/s41566-023-01285-y","DOIUrl":"10.1038/s41566-023-01285-y","url":null,"abstract":"Activity in using photonics for subsea wireless communications and power generation is starting to make waves.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 9","pages":"733-733"},"PeriodicalIF":35.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01285-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48968875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1