首页 > 最新文献

Nature Photonics最新文献

英文 中文
Photostable donor–acceptor interface for minimizing energy loss in inverted perovskite solar cells 用于最小化倒置钙钛矿太阳能电池能量损失的光稳定供体-受体界面
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-14 DOI: 10.1038/s41566-025-01827-6
Congcong Tian, Anxin Sun, Jinling Chen, Rongshan Zhuang, Chen Chen, Jiawei Zheng, Shuo Liu, Jiajun Du, Qianwen Chen, Lei Cai, Shulin Han, Feng Tian, Chun-Chao Chen
Self-assembled monolayers (SAMs) play an important role in improving the performance of inverted perovskite solar cells. However, loose molecular packing, non-uniform coverage, weak affinity with the solvents of perovskite precursors, and energy-level mismatch cause energy losses at the buried interface. Here we develop a light-stable donor–acceptor interface formed by an asymmetric carbazole-based SAM, namely, BrAs, and N-hydroxyethyl phthalimide (PIE). The single-side electron-withdrawing bromine in BrAs maintains wettability and reduces the valence band offset to 0.09 eV. Additionally, the asymmetric dipole in BrAs reorients the carbazole units and strengthens short-range Coulomb interactions, resulting in close packing and uniform coverage of SAMs for efficient and uniform carrier transport. The donor–acceptor interface also promotes ultrafast energy transfer, which enhances the photostability of BrAs and improves thermal carrier extraction by 19%, further minimizing energy losses. In particular, the lattice-matching PIE molecules stabilize the (100) out-of-plane orientation of the perovskite by interlocking [PbI6]4⁻ octahedra, which releases compressive stress and stabilizes the buried interface. As a result, BrAs–PIE devices achieve a power conversion efficiency of 27.28% (certified, 27.19%) and retain over 95% of the initial efficiency after 1,500 h of illumination under the ISOS-L-2 protocol.
自组装单层膜(SAMs)在提高倒置钙钛矿太阳能电池的性能方面发挥着重要作用。然而,由于分子堆积松散、覆盖不均匀、与钙钛矿前驱体溶剂亲和力弱以及能级失配等原因,导致了埋藏界面处的能量损失。在这里,我们开发了一种光稳定的供体-受体界面,由不对称的咔唑基SAM(即bra)和n -羟乙基酞酰亚胺(PIE)形成。bra中的单侧吸电子溴保持了润湿性,并将价带偏移减小到0.09 eV。此外,bra中的不对称偶极子使咔唑单元重新定向,并加强了短程库仑相互作用,从而导致sam的紧密堆积和均匀覆盖,从而实现高效和均匀的载流子传输。供体-受体界面还促进了超快的能量传递,从而提高了bra的光稳定性,并将热载流子提取率提高了19%,进一步减少了能量损失。特别是,晶格匹配的PIE分子通过联锁[PbI6]4 -八面体来稳定钙钛矿的(100)面外取向,释放压应力,稳定埋藏界面。结果,bra - pie器件的功率转换效率达到27.28%(认证为27.19%),并且在iso - l -2协议下照明1500小时后保持95%以上的初始效率。
{"title":"Photostable donor–acceptor interface for minimizing energy loss in inverted perovskite solar cells","authors":"Congcong Tian, Anxin Sun, Jinling Chen, Rongshan Zhuang, Chen Chen, Jiawei Zheng, Shuo Liu, Jiajun Du, Qianwen Chen, Lei Cai, Shulin Han, Feng Tian, Chun-Chao Chen","doi":"10.1038/s41566-025-01827-6","DOIUrl":"https://doi.org/10.1038/s41566-025-01827-6","url":null,"abstract":"Self-assembled monolayers (SAMs) play an important role in improving the performance of inverted perovskite solar cells. However, loose molecular packing, non-uniform coverage, weak affinity with the solvents of perovskite precursors, and energy-level mismatch cause energy losses at the buried interface. Here we develop a light-stable donor–acceptor interface formed by an asymmetric carbazole-based SAM, namely, BrAs, and N-hydroxyethyl phthalimide (PIE). The single-side electron-withdrawing bromine in BrAs maintains wettability and reduces the valence band offset to 0.09 eV. Additionally, the asymmetric dipole in BrAs reorients the carbazole units and strengthens short-range Coulomb interactions, resulting in close packing and uniform coverage of SAMs for efficient and uniform carrier transport. The donor–acceptor interface also promotes ultrafast energy transfer, which enhances the photostability of BrAs and improves thermal carrier extraction by 19%, further minimizing energy losses. In particular, the lattice-matching PIE molecules stabilize the (100) out-of-plane orientation of the perovskite by interlocking [PbI6]4⁻ octahedra, which releases compressive stress and stabilizes the buried interface. As a result, BrAs–PIE devices achieve a power conversion efficiency of 27.28% (certified, 27.19%) and retain over 95% of the initial efficiency after 1,500 h of illumination under the ISOS-L-2 protocol.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"81 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145968813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-speed heterogeneous lithium tantalate silicon photonics platform 一种高速非均相钽酸锂硅光子平台
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-13 DOI: 10.1038/s41566-025-01832-9
Margot Niels, Tom Vanackere, Ewoud Vissers, Tingting Zhai, Patrick Nenezic, Jakob Declercq, Cédric Bruynsteen, Shengpu Niu, Arno Moerman, Olivier Caytan, Nishant Singh, Sam Lemey, Xin Yin, Sofie Janssen, Peter Verheyen, Neha Singh, Dieter Bode, Martin Davi, Filippo Ferraro, Philippe Absil, Sadhishkumar Balakrishnan, Joris Van Campenhout, Günther Roelkens, Bart Kuyken, Maximilien Billet
The rapid expansion of cloud computing and artificial intelligence has driven the demand for faster optical components in data centres to unprecedented levels. A key advancement in this field is the integration of multiple photonic components onto a single chip, enhancing the performance of optical transceivers. Here silicon photonics, benefiting from mature fabrication processes, has gained prominence in both academic research and industrial applications. The platform combines modulators, switches, photodetectors and low-loss waveguides on a single chip. However, emerging telecommunication standards require modulation speeds that exceed the capabilities of silicon-based modulators. To address these limitations, thin-film lithium niobate has been proposed as an alternative to silicon photonics, offering a low voltage–length product and exceptional high-speed modulation properties. More recently, the first demonstrations of thin-film lithium tantalate circuits have emerged, potentially addressing some of the disadvantages of lithium niobate, enabling a reduced bias drift and enhanced resistance to optical damage. As such, this material arises as a promising candidate for next-generation photonic platforms. However, a persistent drawback of such platforms is the lithium contamination, which complicates integration with CMOS fabrication processes. Here we present for the first time the integration of lithium tantalate onto a silicon photonics chip. This integration is achieved without modifying the standard silicon photonics process design kit. Our device achieves low half-wave voltage (3.5 V), low insertion loss (2.9 dB) and high-speed operation (>70 GHz), paving the way for next-generation applications. By minimizing lithium tantalate material use, our approach reduces costs while leveraging existing silicon photonics technology advancements, in particular supporting ultra-fast monolithic germanium photodetectors and established process design kits.
云计算和人工智能的快速发展将数据中心对更快的光学元件的需求推向了前所未有的水平。该领域的一个关键进步是将多个光子元件集成到单个芯片上,从而提高了光收发器的性能。得益于成熟的制造工艺,硅光子学在学术研究和工业应用方面都取得了突出的成就。该平台在单个芯片上集成了调制器、开关、光电探测器和低损耗波导。然而,新兴的电信标准要求调制速度超过硅基调制器的能力。为了解决这些限制,薄膜铌酸锂被提出作为硅光子学的替代品,提供低电压长度的产品和卓越的高速调制特性。最近,薄膜钽酸锂电路的首次演示已经出现,潜在地解决了铌酸锂的一些缺点,减少了偏置漂移,增强了对光学损伤的抵抗力。因此,这种材料成为下一代光子平台的有希望的候选者。然而,这种平台的一个长期缺点是锂污染,这使得与CMOS制造工艺的集成变得复杂。我们首次将钽酸锂集成到硅光子学芯片上。这种集成是在不修改标准硅光子学工艺设计套件的情况下实现的。我们的器件实现了低半波电压(3.5 V)、低插入损耗(2.9 dB)和高速运行(>70 GHz),为下一代应用铺平了道路。通过最大限度地减少钽酸锂材料的使用,我们的方法在利用现有硅光子技术进步的同时降低了成本,特别是支持超快速单片锗光电探测器和已建立的工艺设计套件。
{"title":"A high-speed heterogeneous lithium tantalate silicon photonics platform","authors":"Margot Niels, Tom Vanackere, Ewoud Vissers, Tingting Zhai, Patrick Nenezic, Jakob Declercq, Cédric Bruynsteen, Shengpu Niu, Arno Moerman, Olivier Caytan, Nishant Singh, Sam Lemey, Xin Yin, Sofie Janssen, Peter Verheyen, Neha Singh, Dieter Bode, Martin Davi, Filippo Ferraro, Philippe Absil, Sadhishkumar Balakrishnan, Joris Van Campenhout, Günther Roelkens, Bart Kuyken, Maximilien Billet","doi":"10.1038/s41566-025-01832-9","DOIUrl":"https://doi.org/10.1038/s41566-025-01832-9","url":null,"abstract":"The rapid expansion of cloud computing and artificial intelligence has driven the demand for faster optical components in data centres to unprecedented levels. A key advancement in this field is the integration of multiple photonic components onto a single chip, enhancing the performance of optical transceivers. Here silicon photonics, benefiting from mature fabrication processes, has gained prominence in both academic research and industrial applications. The platform combines modulators, switches, photodetectors and low-loss waveguides on a single chip. However, emerging telecommunication standards require modulation speeds that exceed the capabilities of silicon-based modulators. To address these limitations, thin-film lithium niobate has been proposed as an alternative to silicon photonics, offering a low voltage–length product and exceptional high-speed modulation properties. More recently, the first demonstrations of thin-film lithium tantalate circuits have emerged, potentially addressing some of the disadvantages of lithium niobate, enabling a reduced bias drift and enhanced resistance to optical damage. As such, this material arises as a promising candidate for next-generation photonic platforms. However, a persistent drawback of such platforms is the lithium contamination, which complicates integration with CMOS fabrication processes. Here we present for the first time the integration of lithium tantalate onto a silicon photonics chip. This integration is achieved without modifying the standard silicon photonics process design kit. Our device achieves low half-wave voltage (3.5 V), low insertion loss (2.9 dB) and high-speed operation (>70 GHz), paving the way for next-generation applications. By minimizing lithium tantalate material use, our approach reduces costs while leveraging existing silicon photonics technology advancements, in particular supporting ultra-fast monolithic germanium photodetectors and established process design kits.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"52 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-chip topological leaky-wave antenna for full-space terahertz wireless connectivity 用于全空间太赫兹无线连接的片上拓扑漏波天线
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-12 DOI: 10.1038/s41566-025-01825-8
Wenhao Wang, Yi Ji Tan, Pascal Szriftgiser, Guillaume Ducournau, Ranjan Singh
The rise of topological valley photonics heralds a new era in photonic integrated circuits featuring low-loss, compact designs with robust light transport through sharp corners. However, most demonstrations of valley photonic devices only focus on the robust waveguiding of light with suppressed radiation leakage. Here we harness the conical radiation of leaky valley photonic crystals to demonstrate a topological leaky-wave antenna (LWA) that unifies leaky and guided topological edge states on a single silicon chip. We demonstrate a wide-range beam scanning of 120° in the polar angle with a maximum gain of 15 dBi using a single-branch topological LWA. In addition, the 3-branch LWA enables beam scanning over 75% of the entire three-dimensional solid-angle space. We further demonstrate frequency-division demultiplexing of 3 terahertz wireless links, each radiating 120° apart to collectively deliver high-gain omnidirectional full-space coverage, achieving an aggregate data rate of 72 Gbps. Furthermore, we demonstrate bidirectional dual-channel terahertz wireless links, where the time-reversal-symmetric topological LWA simultaneously receives a real-time high-definition video stream and transmits on-chip signals into free space at a data rate of 24 Gbps. Our on-chip leaky topological antennas provide a versatile platform for the next generation 6G and beyond (XG) cellular networks, imaging, terahertz Wi-Fi (TeraFi), and terahertz detection and ranging (TeDAR).
拓扑谷光子学的兴起预示着光子集成电路的新时代,其特点是低损耗,紧凑的设计,通过尖角的强大光传输。然而,大多数谷光子器件的演示只集中在抑制辐射泄漏的光的鲁棒波导上。在这里,我们利用漏谷光子晶体的锥形辐射来展示一种拓扑漏波天线(LWA),该天线在单个硅芯片上统一了漏和导拓扑边缘状态。我们演示了使用单支路拓扑LWA的极角120°宽范围波束扫描,最大增益为15 dBi。此外,3支路LWA可以扫描整个三维立体角空间的75%以上。我们进一步演示了3太赫兹无线链路的频分解复用,每个链路相隔120°辐射,共同提供高增益全向全空间覆盖,实现72 Gbps的总数据速率。此外,我们展示了双向双通道太赫兹无线链路,其中时间反转对称拓扑LWA同时接收实时高清视频流,并以24 Gbps的数据速率将片上信号传输到空闲空间。我们的片上泄漏拓扑天线为下一代6G及以上(XG)蜂窝网络、成像、太赫兹Wi-Fi (TeraFi)和太赫兹探测和测距(TeDAR)提供了一个多功能平台。
{"title":"On-chip topological leaky-wave antenna for full-space terahertz wireless connectivity","authors":"Wenhao Wang, Yi Ji Tan, Pascal Szriftgiser, Guillaume Ducournau, Ranjan Singh","doi":"10.1038/s41566-025-01825-8","DOIUrl":"https://doi.org/10.1038/s41566-025-01825-8","url":null,"abstract":"The rise of topological valley photonics heralds a new era in photonic integrated circuits featuring low-loss, compact designs with robust light transport through sharp corners. However, most demonstrations of valley photonic devices only focus on the robust waveguiding of light with suppressed radiation leakage. Here we harness the conical radiation of leaky valley photonic crystals to demonstrate a topological leaky-wave antenna (LWA) that unifies leaky and guided topological edge states on a single silicon chip. We demonstrate a wide-range beam scanning of 120° in the polar angle with a maximum gain of 15 dBi using a single-branch topological LWA. In addition, the 3-branch LWA enables beam scanning over 75% of the entire three-dimensional solid-angle space. We further demonstrate frequency-division demultiplexing of 3 terahertz wireless links, each radiating 120° apart to collectively deliver high-gain omnidirectional full-space coverage, achieving an aggregate data rate of 72 Gbps. Furthermore, we demonstrate bidirectional dual-channel terahertz wireless links, where the time-reversal-symmetric topological LWA simultaneously receives a real-time high-definition video stream and transmits on-chip signals into free space at a data rate of 24 Gbps. Our on-chip leaky topological antennas provide a versatile platform for the next generation 6G and beyond (XG) cellular networks, imaging, terahertz Wi-Fi (TeraFi), and terahertz detection and ranging (TeDAR).","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"124 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encoding and manipulating ultrafast coherent valleytronic information with lightwaves 用光波编码和操纵超快相干谷电子信息
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-09 DOI: 10.1038/s41566-025-01823-w
Francesco Gucci, Eduardo B. Molinero, Mattia Russo, Pablo San-Jose, Franco V. A. Camargo, Margherita Maiuri, Misha Ivanov, Álvaro Jiménez-Galán, Rui E. F. Silva, Stefano Dal Conte, Giulio Cerullo
{"title":"Encoding and manipulating ultrafast coherent valleytronic information with lightwaves","authors":"Francesco Gucci, Eduardo B. Molinero, Mattia Russo, Pablo San-Jose, Franco V. A. Camargo, Margherita Maiuri, Misha Ivanov, Álvaro Jiménez-Galán, Rui E. F. Silva, Stefano Dal Conte, Giulio Cerullo","doi":"10.1038/s41566-025-01823-w","DOIUrl":"https://doi.org/10.1038/s41566-025-01823-w","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"35 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable deep-blue organic light-emitting diodes based on sensitized fluorescence 基于敏化荧光的稳定的深蓝色有机发光二极管
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-08 DOI: 10.1038/s41566-025-01810-1
Dongdong Zhang, Hengyi Dai, Hai Zhang, Lian Duan
{"title":"Stable deep-blue organic light-emitting diodes based on sensitized fluorescence","authors":"Dongdong Zhang, Hengyi Dai, Hai Zhang, Lian Duan","doi":"10.1038/s41566-025-01810-1","DOIUrl":"https://doi.org/10.1038/s41566-025-01810-1","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"49 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-pixel colour correction with organic self-adaptive transistors 用有机自适应晶体管进行像素内色彩校正
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-07 DOI: 10.1038/s41566-025-01812-z
Zihan He, Wei Wang, Zepang Zhan, Lingxuan Jia, Yutao Ge, Zitong Zhan, Peiyao Xue, Weijie Wang, Lanyi Xiang, Yingqiao Ma, Yawen Li, Zhiyi Li, Xiaojuan Dai, Dekai Ye, Liyao Liu, Fengjiao Zhang, Ye Zou, Yuze Lin, Xiaowei Zhan, Daoben Zhu, Chong-an Di
{"title":"In-pixel colour correction with organic self-adaptive transistors","authors":"Zihan He, Wei Wang, Zepang Zhan, Lingxuan Jia, Yutao Ge, Zitong Zhan, Peiyao Xue, Weijie Wang, Lanyi Xiang, Yingqiao Ma, Yawen Li, Zhiyi Li, Xiaojuan Dai, Dekai Ye, Liyao Liu, Fengjiao Zhang, Ye Zou, Yuze Lin, Xiaowei Zhan, Daoben Zhu, Chong-an Di","doi":"10.1038/s41566-025-01812-z","DOIUrl":"https://doi.org/10.1038/s41566-025-01812-z","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"20 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interlayer engineering in metal halide perovskite photovoltaics 金属卤化物钙钛矿光伏的层间工程
IF 32.9 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-06 DOI: 10.1038/s41566-025-01809-8
Seong Sik Shin, Byung-wook Park, Jun Hong Noh, Sang Il Seok
Interlayers (ILs) play a pivotal role in perovskite solar cells, enabling efficient charge extraction, suppressing recombination and enhancing device stability. Positioned between the light-absorbing perovskite layer and the electrodes, ILs facilitate selective carrier transport while mitigating interfacial losses. Unlike GaAs cells and heterojunction with intrinsic thin layer silicon cells, which benefit from coherent, chemically compatible interfaces, perovskite solar cells exhibit structural and energetic mismatches at the interfaces between the perovskite and charge transport layers (CTLs). To address these challenges, functional interfacial ILs are introduced at both the CTL/perovskite and CTL/electrode interfaces. This Review examines the evolution of these ILs, from simple passivation layers to multifunctional components that regulate electric fields and carrier dynamics. We highlight recent advances in materials and architectures, classify ILs by their device position and discuss design strategies inspired by mature photovoltaic technologies. We argue that interfacial IL engineering is crucial to radiative efficiency and stable, high-performance perovskite solar cells. This Review discusses recent advances in interlayer engineering for perovskite solar cells, highlighting promising materials and architectures that could improve the stability and efficiency of devices.
中间层(ILs)在钙钛矿太阳能电池中起着关键作用,可以实现高效的电荷提取,抑制复合和提高器件稳定性。位于光吸收钙钛矿层和电极之间,ILs促进选择性载流子传输,同时减轻界面损失。与砷化镓电池和具有本征薄层硅电池的异质结不同,钙钛矿太阳能电池在钙钛矿和电荷传输层(ctl)之间的界面上表现出结构和能量不匹配。为了解决这些挑战,在CTL/钙钛矿和CTL/电极界面引入了功能界面il。本文综述了这些il的演变,从简单的钝化层到调节电场和载流子动力学的多功能组件。我们重点介绍了材料和架构的最新进展,根据其器件位置对il进行分类,并讨论了受成熟光伏技术启发的设计策略。我们认为界面IL工程对辐射效率和稳定、高性能的钙钛矿太阳能电池至关重要。
{"title":"Interlayer engineering in metal halide perovskite photovoltaics","authors":"Seong Sik Shin, Byung-wook Park, Jun Hong Noh, Sang Il Seok","doi":"10.1038/s41566-025-01809-8","DOIUrl":"10.1038/s41566-025-01809-8","url":null,"abstract":"Interlayers (ILs) play a pivotal role in perovskite solar cells, enabling efficient charge extraction, suppressing recombination and enhancing device stability. Positioned between the light-absorbing perovskite layer and the electrodes, ILs facilitate selective carrier transport while mitigating interfacial losses. Unlike GaAs cells and heterojunction with intrinsic thin layer silicon cells, which benefit from coherent, chemically compatible interfaces, perovskite solar cells exhibit structural and energetic mismatches at the interfaces between the perovskite and charge transport layers (CTLs). To address these challenges, functional interfacial ILs are introduced at both the CTL/perovskite and CTL/electrode interfaces. This Review examines the evolution of these ILs, from simple passivation layers to multifunctional components that regulate electric fields and carrier dynamics. We highlight recent advances in materials and architectures, classify ILs by their device position and discuss design strategies inspired by mature photovoltaic technologies. We argue that interfacial IL engineering is crucial to radiative efficiency and stable, high-performance perovskite solar cells. This Review discusses recent advances in interlayer engineering for perovskite solar cells, highlighting promising materials and architectures that could improve the stability and efficiency of devices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"20 1","pages":"11-23"},"PeriodicalIF":32.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron shaping for continuous terahertz coverage 连续太赫兹覆盖的电子成形
IF 32.9 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-06 DOI: 10.1038/s41566-025-01829-4
Keigo Kawase, Goro Isoyama
Modulating an electron beam with a frequency-beating laser enables a free-electron laser to generate high-power, narrowband terahertz pulses that can be continuously tuned from 7.8 to 30.8 terahertz.
用跳频激光器调制电子束可以使自由电子激光器产生高功率窄带太赫兹脉冲,这种脉冲可以在7.8到30.8太赫兹之间连续调谐。
{"title":"Electron shaping for continuous terahertz coverage","authors":"Keigo Kawase, Goro Isoyama","doi":"10.1038/s41566-025-01829-4","DOIUrl":"10.1038/s41566-025-01829-4","url":null,"abstract":"Modulating an electron beam with a frequency-beating laser enables a free-electron laser to generate high-power, narrowband terahertz pulses that can be continuously tuned from 7.8 to 30.8 terahertz.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"20 1","pages":"1-2"},"PeriodicalIF":32.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon nitride nanocomposites at the buried interface for stable perovskite solar cells 用于稳定钙钛矿太阳能电池的埋藏界面氮化硅纳米复合材料
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-06 DOI: 10.1038/s41566-025-01819-6
Biao Li, Xingtao Wang, Tianchi Zhang, Weihua Ning, Dongming Zhao, Yong Wang, Xuegong Yu, Deren Yang
{"title":"Silicon nitride nanocomposites at the buried interface for stable perovskite solar cells","authors":"Biao Li, Xingtao Wang, Tianchi Zhang, Weihua Ning, Dongming Zhao, Yong Wang, Xuegong Yu, Deren Yang","doi":"10.1038/s41566-025-01819-6","DOIUrl":"https://doi.org/10.1038/s41566-025-01819-6","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"354 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplying matrices in a single pass with light 用光在单个通道中相乘矩阵
IF 32.9 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-01-06 DOI: 10.1038/s41566-025-01828-5
Carlos A. Ríos Ocampo, Nathan Youngblood
Optical computing has been limited to vector–matrix multiplications, with matrix–matrix operations requiring wavelength- or time-division multiplexing, reducing energy efficiency and speed. Now, researchers have demonstrated a free-space optical approach that overcomes these limitations, enabling parallel matrix–matrix and tensor–matrix multiplications in a single optical operation.
光学计算仅限于矢量矩阵乘法,矩阵矩阵运算需要波长或时分复用,降低了能量效率和速度。现在,研究人员已经展示了一种自由空间光学方法,克服了这些限制,在一次光学操作中实现了并行矩阵-矩阵和张量-矩阵乘法。
{"title":"Multiplying matrices in a single pass with light","authors":"Carlos A. Ríos Ocampo, Nathan Youngblood","doi":"10.1038/s41566-025-01828-5","DOIUrl":"10.1038/s41566-025-01828-5","url":null,"abstract":"Optical computing has been limited to vector–matrix multiplications, with matrix–matrix operations requiring wavelength- or time-division multiplexing, reducing energy efficiency and speed. Now, researchers have demonstrated a free-space optical approach that overcomes these limitations, enabling parallel matrix–matrix and tensor–matrix multiplications in a single optical operation.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"20 1","pages":"3-4"},"PeriodicalIF":32.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1