Hydrocarbon Source and Relationship between Hydrocarbon Charging Process and Reservoir Tight Period of the Denglouku Formation Tight Sandstone Gas Reservoirs in the Xujiaweizi Fault Depression, Songliao Basin
{"title":"Hydrocarbon Source and Relationship between Hydrocarbon Charging Process and Reservoir Tight Period of the Denglouku Formation Tight Sandstone Gas Reservoirs in the Xujiaweizi Fault Depression, Songliao Basin","authors":"Huan Miao, Zhenxue Jiang, Jiaming Lu, Chengju Zhang, Lidong Shi, Lidong Sun, Liang Yang, Peng Shang","doi":"10.1007/s11053-024-10359-9","DOIUrl":null,"url":null,"abstract":"<p>The exploration level of tight sandstone gas reservoirs in the Denglouku Formation (DF) in the Xujiaweizi Fault Depression is low, and hydrocarbon source and accumulation process remain unclear. Through the analysis of natural gas geochemistry, X-ray diffraction, thin section observation, scanning electron microscope, physical property testing, cathodoluminescence, fluid inclusions, and basin simulation, we examine source of hydrocarbon, the period of hydrocarbon accumulation, and the evolution of physical properties of the tight sandstone gas in the DF. Additionally, the formation process of tight sandstone gas reservoirs in the DF is discussed. The results reveal the following: (1) the tight sandstone gas in the DF is categorized as III kerogen cracking gas, primarily sourced from dark mudstone of the second member of the DF, with some contribution from dark mudstone of the Shahezi Formation. (2) The tight sandstone in the DF is in stage B of middle diagenesis. Based on apparent compaction rate, apparent cementation rate, and apparent dissolution rate, it can be divided into four diagenetic facies: (1) strong compaction–medium cementation–weak dissolution facies; (2) medium compaction–strong cementation–medium dissolution facies; (3) medium compaction–strong cementation–weak dissolution facies; and (4) medium compaction–medium cementation–medium dissolution facies. The predominant diagenetic facies are the medium compaction–strong cementation–medium dissolution facies and medium compaction–medium cementation–medium dissolution facies. (3) The hydrocarbon charging period of the DF in study area ranged from 98 to 67.5 Ma. This period is earlier than the tight period of the strong compaction–medium cementation–weak dissolution facies sandstone and later than the tight period of the medium compaction–strong cementation–medium dissolution facies, medium compaction–strong cementation–weak dissolution facies, and medium compaction–medium cementation–medium dissolution facies sandstone. Consequently, two types of tight sandstone gas reservoirs exist in study area: (1) tight sandstone gas reservoir with tight first and then accumulation type and (2) composite tight sandstone gas reservoirs. Our research offers theoretical instruction for exploration of deep tight sandstone gas in northern Songliao Basin.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10359-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration level of tight sandstone gas reservoirs in the Denglouku Formation (DF) in the Xujiaweizi Fault Depression is low, and hydrocarbon source and accumulation process remain unclear. Through the analysis of natural gas geochemistry, X-ray diffraction, thin section observation, scanning electron microscope, physical property testing, cathodoluminescence, fluid inclusions, and basin simulation, we examine source of hydrocarbon, the period of hydrocarbon accumulation, and the evolution of physical properties of the tight sandstone gas in the DF. Additionally, the formation process of tight sandstone gas reservoirs in the DF is discussed. The results reveal the following: (1) the tight sandstone gas in the DF is categorized as III kerogen cracking gas, primarily sourced from dark mudstone of the second member of the DF, with some contribution from dark mudstone of the Shahezi Formation. (2) The tight sandstone in the DF is in stage B of middle diagenesis. Based on apparent compaction rate, apparent cementation rate, and apparent dissolution rate, it can be divided into four diagenetic facies: (1) strong compaction–medium cementation–weak dissolution facies; (2) medium compaction–strong cementation–medium dissolution facies; (3) medium compaction–strong cementation–weak dissolution facies; and (4) medium compaction–medium cementation–medium dissolution facies. The predominant diagenetic facies are the medium compaction–strong cementation–medium dissolution facies and medium compaction–medium cementation–medium dissolution facies. (3) The hydrocarbon charging period of the DF in study area ranged from 98 to 67.5 Ma. This period is earlier than the tight period of the strong compaction–medium cementation–weak dissolution facies sandstone and later than the tight period of the medium compaction–strong cementation–medium dissolution facies, medium compaction–strong cementation–weak dissolution facies, and medium compaction–medium cementation–medium dissolution facies sandstone. Consequently, two types of tight sandstone gas reservoirs exist in study area: (1) tight sandstone gas reservoir with tight first and then accumulation type and (2) composite tight sandstone gas reservoirs. Our research offers theoretical instruction for exploration of deep tight sandstone gas in northern Songliao Basin.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.