In Vitro Investigation of Vocal Fold Cellular Response to Variations in Hydrogel Porosity and Elasticity

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-05-24 DOI:10.1021/acsbiomaterials.4c00197
Sara Nejati,  and , Luc Mongeau*, 
{"title":"In Vitro Investigation of Vocal Fold Cellular Response to Variations in Hydrogel Porosity and Elasticity","authors":"Sara Nejati,&nbsp; and ,&nbsp;Luc Mongeau*,&nbsp;","doi":"10.1021/acsbiomaterials.4c00197","DOIUrl":null,"url":null,"abstract":"<p >Tissue regeneration is intricately influenced by the dynamic interplay between the physical attributes of tissue engineering scaffolds and the resulting biological responses. A tunable microporous hydrogel system was engineered using gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (PEGDA), with polyethylene glycol (PEG) serving as a porogen. Through systematic variation of PEGDA molecular weights, hydrogels with varying mechanical and architectural properties were obtained. The objective of the present study was to elucidate the impact of substrate mechanics and architecture on the immunological and reparative activities of vocal fold tissues. Mechanical characterization of the hydrogels was performed using tensile strength measurements and rheometry. Their morphological properties were investigated using scanning electron microscopy (SEM) and confocal microscopy. A series of biological assays were conducted. Cellular morphology, differentiation, and collagen synthesis of human vocal fold fibroblasts (hVFFs) were evaluated using immunostaining. Fibroblast proliferation was studied using the WST-1 assay, and cell migration was investigated via the Boyden chamber assay. Macrophage polarization and secretions were also examined using immunostaining and ELISA. The results revealed that increasing the molecular weight of PEGDA from 700 Da to 10,000 Da resulted in decreased hydrogel stiffness, from 62.6 to 8.8 kPa, and increased pore dimensions from approximately 64.9 to 137.4 μm. Biological evaluations revealed that hydrogels with a higher stiffness promoted fibroblast proliferation and spreading, albeit with an increased propensity for fibrosis, as indicated by a surge in myofibroblast differentiation and collagen synthesis. In contrast, hydrogels with greater molecular weights had a softer matrix with expanded pores, enhancing cellular migration and promoting an M2 macrophage phenotype conducive to tissue healing. The findings show that the hydrogels formulated with a PEGDA molecular weight of 6000 Da are best among the hydrogels considered for vocal fold repair. The microporous hydrogels could be tuned to serve in other tissue engineering applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00197","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue regeneration is intricately influenced by the dynamic interplay between the physical attributes of tissue engineering scaffolds and the resulting biological responses. A tunable microporous hydrogel system was engineered using gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (PEGDA), with polyethylene glycol (PEG) serving as a porogen. Through systematic variation of PEGDA molecular weights, hydrogels with varying mechanical and architectural properties were obtained. The objective of the present study was to elucidate the impact of substrate mechanics and architecture on the immunological and reparative activities of vocal fold tissues. Mechanical characterization of the hydrogels was performed using tensile strength measurements and rheometry. Their morphological properties were investigated using scanning electron microscopy (SEM) and confocal microscopy. A series of biological assays were conducted. Cellular morphology, differentiation, and collagen synthesis of human vocal fold fibroblasts (hVFFs) were evaluated using immunostaining. Fibroblast proliferation was studied using the WST-1 assay, and cell migration was investigated via the Boyden chamber assay. Macrophage polarization and secretions were also examined using immunostaining and ELISA. The results revealed that increasing the molecular weight of PEGDA from 700 Da to 10,000 Da resulted in decreased hydrogel stiffness, from 62.6 to 8.8 kPa, and increased pore dimensions from approximately 64.9 to 137.4 μm. Biological evaluations revealed that hydrogels with a higher stiffness promoted fibroblast proliferation and spreading, albeit with an increased propensity for fibrosis, as indicated by a surge in myofibroblast differentiation and collagen synthesis. In contrast, hydrogels with greater molecular weights had a softer matrix with expanded pores, enhancing cellular migration and promoting an M2 macrophage phenotype conducive to tissue healing. The findings show that the hydrogels formulated with a PEGDA molecular weight of 6000 Da are best among the hydrogels considered for vocal fold repair. The microporous hydrogels could be tuned to serve in other tissue engineering applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声带褶皱细胞对水凝胶孔隙率和弹性变化反应的体外研究
组织工程支架的物理属性与由此产生的生物反应之间的动态相互作用对组织再生有着错综复杂的影响。研究人员利用甲基丙烯酰明胶(GelMA)和聚乙二醇二丙烯酸酯(PEGDA),以聚乙二醇(PEG)为致孔剂,设计出了一种可调微孔水凝胶系统。通过系统地改变 PEGDA 的分子量,可获得具有不同机械和结构特性的水凝胶。本研究旨在阐明基质力学和结构对声带组织免疫和修复活动的影响。通过拉伸强度测量和流变仪对水凝胶进行了力学表征。使用扫描电子显微镜(SEM)和共聚焦显微镜研究了它们的形态特性。还进行了一系列生物试验。使用免疫染色法评估了人声带成纤维细胞(hVFFs)的细胞形态、分化和胶原合成。使用 WST-1 试验研究了成纤维细胞的增殖情况,并通过波登室试验研究了细胞迁移情况。还使用免疫染色法和酶联免疫吸附法检测了巨噬细胞的极化和分泌。结果表明,将 PEGDA 的分子量从 700 Da 提高到 10,000 Da 后,水凝胶的硬度从 62.6 kPa 降低到 8.8 kPa,孔径从约 64.9 μm 增加到 137.4 μm。生物学评估显示,刚度较高的水凝胶可促进成纤维细胞的增殖和扩散,但纤维化倾向增加,表现为肌成纤维细胞分化和胶原合成激增。相比之下,分子量较大的水凝胶基质较软,孔隙扩大,增强了细胞迁移能力,促进了有利于组织愈合的M2巨噬细胞表型。研究结果表明,在用于声带修复的水凝胶中,PEGDA 分子量为 6000 Da 的水凝胶效果最好。这种微孔水凝胶还可用于其他组织工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo. Quantum Insights into Partially Molecular Imprinted Microspheres for Anticancer Therapeutics: Experimental and Theoretical Studies. Shape Memory Polymer Bioglass Composite Scaffolds Designed to Heal Complex Bone Defects. Mechanical Properties, Microstructure, Degradation Behavior, and Biocompatibility of Zn-0.5Ti-0.5Fe and Zn-0.5Ti-0.5Mg Guided Bone Regeneration Barrier Membranes Prepared Using a Powder Metallurgy Method. Software Integrated Personalized Biosensing Device for Serum Creatinine Detection Based on Boron doped MXene Nanohybrid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1