Ling Zhang, Runting Ge, Yanhua Yang, Keping Chen, Chengjun Li
{"title":"The zona pellucida protein piopio regulates the metamorphosis and reproduction in Tribolium castaneum","authors":"Ling Zhang, Runting Ge, Yanhua Yang, Keping Chen, Chengjun Li","doi":"10.1002/arch.22122","DOIUrl":null,"url":null,"abstract":"<p>The zona pellucida domain protein piopio (Pio) was only reported to mediate the adhesion of the apical epithelial surface and the overlying apical extracellular matrix in <i>Drosophila melanogaster</i>, but the developmental roles of Pio were poorly understood in insects. To address this issue, we comprehensively analyzed the function of Pio in <i>Tribolium castaneum</i>. Phylogenetic analysis indicated that <i>pio</i> exhibited one-to-one orthologous relationship among insects. <i>T. castaneum pio</i> had a 1236-bp ORF and contained eight exons. During development <i>pio</i> was abundantly expressed from larva to adult and lowly expressed at the late stage of embryo and adult, while it had more transcripts in the head, epidermis, and gut but fewer in the fat body of late-stage larvae. Knockdown of <i>pio</i> inhibited the pupation, eclosion, and reproduction of <i>T. castaneum</i>. The expression of <i>vitellogenin 1</i> (<i>Vg1</i>), <i>Vg2</i>, and <i>Vg receptor</i> (<i>VgR</i>) largely decreased in <i>pio</i>-silenced female adults. Silencing <i>pio</i> increased the 20-hydroxyecdysone titer by upregulating <i>phm</i> and <i>spo</i> expression but decreased the juvenile hormone (JH) titer through downregulating <i>JHAMT3</i> and promoting <i>JHE, JHEH-r4</i>, and <i>JHDK</i> transcription. These results suggested that Pio might regulate the metamorphosis and reproduction via modulating the ecdysone and JH metabolism in <i>T. castaneum</i>. This study found the novel roles of <i>pio</i> in insect metamorphosis and reproduction, and provided the new insights for analyzing other zona pellucida proteins functions in insects.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22122","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The zona pellucida domain protein piopio (Pio) was only reported to mediate the adhesion of the apical epithelial surface and the overlying apical extracellular matrix in Drosophila melanogaster, but the developmental roles of Pio were poorly understood in insects. To address this issue, we comprehensively analyzed the function of Pio in Tribolium castaneum. Phylogenetic analysis indicated that pio exhibited one-to-one orthologous relationship among insects. T. castaneum pio had a 1236-bp ORF and contained eight exons. During development pio was abundantly expressed from larva to adult and lowly expressed at the late stage of embryo and adult, while it had more transcripts in the head, epidermis, and gut but fewer in the fat body of late-stage larvae. Knockdown of pio inhibited the pupation, eclosion, and reproduction of T. castaneum. The expression of vitellogenin 1 (Vg1), Vg2, and Vg receptor (VgR) largely decreased in pio-silenced female adults. Silencing pio increased the 20-hydroxyecdysone titer by upregulating phm and spo expression but decreased the juvenile hormone (JH) titer through downregulating JHAMT3 and promoting JHE, JHEH-r4, and JHDK transcription. These results suggested that Pio might regulate the metamorphosis and reproduction via modulating the ecdysone and JH metabolism in T. castaneum. This study found the novel roles of pio in insect metamorphosis and reproduction, and provided the new insights for analyzing other zona pellucida proteins functions in insects.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.