Investigating the Effects of Tube Current and Tube Voltage on Patient Dose in Computed Tomography Examinations with Principial Component Analysis and Cluster Analysis: Phantom Study.
{"title":"Investigating the Effects of Tube Current and Tube Voltage on Patient Dose in Computed Tomography Examinations with Principial Component Analysis and Cluster Analysis: Phantom Study.","authors":"Güneş Açıkgöz","doi":"10.1097/HP.0000000000001830","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>The aim of this study was to investigate the effects of tube current and tube voltage choices on patient dose in adult and pediatric CT protocols by qualitative analysis using Principal Component Analysis (PCA), cluster analysis, and statistical analysis.Dose length product (DLP), Effective mAs (Eff. mAs), and volume-weighted CT dose index (CTDIvol) dose descriptors were obtained from 16 adult and pediatric head phantom CT examinations. Different tube voltage and tube current values were selected in both pediatric head and adult head CT imaging protocols, and PCA and cluster analysis were applied to the data obtained for qualitative analysis of the relationship between CTDIvol, Eff. mAs and Total DLP values. The two principial components (PC) with the highest values among those obtained as a result of the PCA method were used. PC1 was 70.97%, and PC2 was 28.03%. In the cluster analysis, it was observed that the values obtained from pediatric and adult phantom CT scans were classified into two different clusters. The correlation coefficient for adult patients was r = 0.998, and for pediatric patients, the correlation coefficient was r = 0.947. When the obtained clusters were examined, the degree of closeness or distance of the variables could be observed. In the study, as a result of the analysis of CTDIvol, Eff. mAs and Total DLP data based on manufacturer data at different kV and mA values with PCA and cluster analysis, it was shown that pediatric patients could be exposed to more radiation than the adult patients.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"513-519"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The aim of this study was to investigate the effects of tube current and tube voltage choices on patient dose in adult and pediatric CT protocols by qualitative analysis using Principal Component Analysis (PCA), cluster analysis, and statistical analysis.Dose length product (DLP), Effective mAs (Eff. mAs), and volume-weighted CT dose index (CTDIvol) dose descriptors were obtained from 16 adult and pediatric head phantom CT examinations. Different tube voltage and tube current values were selected in both pediatric head and adult head CT imaging protocols, and PCA and cluster analysis were applied to the data obtained for qualitative analysis of the relationship between CTDIvol, Eff. mAs and Total DLP values. The two principial components (PC) with the highest values among those obtained as a result of the PCA method were used. PC1 was 70.97%, and PC2 was 28.03%. In the cluster analysis, it was observed that the values obtained from pediatric and adult phantom CT scans were classified into two different clusters. The correlation coefficient for adult patients was r = 0.998, and for pediatric patients, the correlation coefficient was r = 0.947. When the obtained clusters were examined, the degree of closeness or distance of the variables could be observed. In the study, as a result of the analysis of CTDIvol, Eff. mAs and Total DLP data based on manufacturer data at different kV and mA values with PCA and cluster analysis, it was shown that pediatric patients could be exposed to more radiation than the adult patients.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.