Irene Del Lesto, Adele Magliano, Riccardo Casini, Arianna Ermenegildi, Pasquale Rombolà, Claudio De Liberato, Federico Romiti
{"title":"Ecological niche modelling of Culicoides imicola and future range shifts under climate change scenarios in Italy","authors":"Irene Del Lesto, Adele Magliano, Riccardo Casini, Arianna Ermenegildi, Pasquale Rombolà, Claudio De Liberato, Federico Romiti","doi":"10.1111/mve.12730","DOIUrl":null,"url":null,"abstract":"<p><i>Culicoides imicola</i> is the main vector of viral diseases of livestock in Europe such as bluetongue (BT), African horse sickness and epizootic haemorrhagic disease. Climatic factors are the main drivers of <i>C. imicola</i> occurrence and its distribution might be subject to rapid shifts due to climate change. Entomological data, collected during BT surveillance, and climatic/environmental variables were used to analyse ecological niche and to model <i>C. imicola</i> distribution and possible future range shifts in Italy. An ensemble technique was used to weigh the performance of machine learning, linear and profile methods. Updated future climate projections from the latest phase of the Climate Model Intercomparison Project were used to generate future distributions for the next three 20-year periods, according to combinations of general circulation models and shared socioeconomic pathways and considering different climate change scenarios. Results indicated the minimum temperature of the coldest month (BIO 6) and precipitation of the driest-warmest months (BIO 14) as the main limiting climatic factors. Indeed, BIO 6 and BIO 14 reported the two highest values of variable importance, respectively, 9.16% (confidence interval [CI] = 7.99%–10.32%), and 2.01% (CI = 1.57%–2.44%). Under the worst-case scenario of climate change, <i>C. imicola</i> range is expected to expand northward and shift away from the coasts of central Italy, while in some areas of southern Italy, environmental suitability will decrease. Our results provide predictions of <i>C. imicola</i> distribution according to the most up-to-date future climate projections and should be of great use to surveillance management at regional and national scales<i>.</i></p>","PeriodicalId":18350,"journal":{"name":"Medical and Veterinary Entomology","volume":"38 4","pages":"416-428"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mve.12730","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical and Veterinary Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mve.12730","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Culicoides imicola is the main vector of viral diseases of livestock in Europe such as bluetongue (BT), African horse sickness and epizootic haemorrhagic disease. Climatic factors are the main drivers of C. imicola occurrence and its distribution might be subject to rapid shifts due to climate change. Entomological data, collected during BT surveillance, and climatic/environmental variables were used to analyse ecological niche and to model C. imicola distribution and possible future range shifts in Italy. An ensemble technique was used to weigh the performance of machine learning, linear and profile methods. Updated future climate projections from the latest phase of the Climate Model Intercomparison Project were used to generate future distributions for the next three 20-year periods, according to combinations of general circulation models and shared socioeconomic pathways and considering different climate change scenarios. Results indicated the minimum temperature of the coldest month (BIO 6) and precipitation of the driest-warmest months (BIO 14) as the main limiting climatic factors. Indeed, BIO 6 and BIO 14 reported the two highest values of variable importance, respectively, 9.16% (confidence interval [CI] = 7.99%–10.32%), and 2.01% (CI = 1.57%–2.44%). Under the worst-case scenario of climate change, C. imicola range is expected to expand northward and shift away from the coasts of central Italy, while in some areas of southern Italy, environmental suitability will decrease. Our results provide predictions of C. imicola distribution according to the most up-to-date future climate projections and should be of great use to surveillance management at regional and national scales.
期刊介绍:
Medical and Veterinary Entomology is the leading periodical in its field. The Journal covers the biology and control of insects, ticks, mites and other arthropods of medical and veterinary importance. The main strengths of the Journal lie in the fields of:
-epidemiology and transmission of vector-borne pathogens
changes in vector distribution that have impact on the pathogen transmission-
arthropod behaviour and ecology-
novel, field evaluated, approaches to biological and chemical control methods-
host arthropod interactions.
Please note that we do not consider submissions in forensic entomology.