{"title":"Preservation of ovarian function using human pluripotent stem cell-derived mesenchymal progenitor cells.","authors":"Dong Ryul Lee, Jeoung Eun Lee","doi":"10.5653/cerm.2024.07003","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian reserve diminishes with age, and older women experience a corresponding shift in sex hormone levels. These changes contribute to an age-dependent decrease in fertility and a decline in overall health. Furthermore, while survival rates following cancer treatment have improved for young female patients, a reduction in ovarian function due to the side effects of such treatments can be difficult to avoid. To date, no effective therapy has been recommended to preserve ovarian health in these patients. Mesenchymal progenitor cells (MPCs) are considered a promising option for cell therapy aimed at maintaining fertility and fecundity. Although MPCs derived from human adult tissues are recognized for their various protective effects against ovarian senescence, they are limited in quantity. Consequently, human pluripotent stem cell-derived MPCs (hPSC-MPCs), which exhibit high proliferative capacity and retain genetic stability during growth, have been utilized to delay reproductive aging. This review highlights the impact of hPSC-MPCs on preserving the functionality of damaged ovaries in female mouse models subjected to chemotherapy and natural aging. It also proposes their potential as a valuable cell source for fertility preservation in women with a variety of diseases.</p>","PeriodicalId":46409,"journal":{"name":"Clinical and Experimental Reproductive Medicine-CERM","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Reproductive Medicine-CERM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5653/cerm.2024.07003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian reserve diminishes with age, and older women experience a corresponding shift in sex hormone levels. These changes contribute to an age-dependent decrease in fertility and a decline in overall health. Furthermore, while survival rates following cancer treatment have improved for young female patients, a reduction in ovarian function due to the side effects of such treatments can be difficult to avoid. To date, no effective therapy has been recommended to preserve ovarian health in these patients. Mesenchymal progenitor cells (MPCs) are considered a promising option for cell therapy aimed at maintaining fertility and fecundity. Although MPCs derived from human adult tissues are recognized for their various protective effects against ovarian senescence, they are limited in quantity. Consequently, human pluripotent stem cell-derived MPCs (hPSC-MPCs), which exhibit high proliferative capacity and retain genetic stability during growth, have been utilized to delay reproductive aging. This review highlights the impact of hPSC-MPCs on preserving the functionality of damaged ovaries in female mouse models subjected to chemotherapy and natural aging. It also proposes their potential as a valuable cell source for fertility preservation in women with a variety of diseases.