{"title":"Structure-based drug design for TSPO: Challenges and opportunities","authors":"","doi":"10.1016/j.biochi.2024.05.018","DOIUrl":null,"url":null,"abstract":"<div><p>The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424001202/pdfft?md5=5861fa0167f6689f46ed0ac5bc6ac94d&pid=1-s2.0-S0300908424001202-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424001202","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.