Enhancing hERG Risk Assessment with Interpretable Classificatory and Regression Models

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-23 DOI:10.1021/acs.chemrestox.3c00400
Igor H. Sanches, Rodolpho C. Braga, Vinicius M. Alves and Carolina Horta Andrade*, 
{"title":"Enhancing hERG Risk Assessment with Interpretable Classificatory and Regression Models","authors":"Igor H. Sanches,&nbsp;Rodolpho C. Braga,&nbsp;Vinicius M. Alves and Carolina Horta Andrade*,&nbsp;","doi":"10.1021/acs.chemrestox.3c00400","DOIUrl":null,"url":null,"abstract":"<p >The human Ether-à-go-go-Related Gene (hERG) is a transmembrane protein that regulates cardiac action potential, and its inhibition can induce a potentially deadly cardiac syndrome. <i>In vitro</i> tests help identify hERG blockers at early stages; however, the high cost motivates searching for alternative, cost-effective methods. The primary goal of this study was to enhance the Pred-hERG tool for predicting hERG blockage. To achieve this, we developed new QSAR models that incorporated additional data, updated existing classificatory and multiclassificatory models, and introduced new regression models. Notably, we integrated SHAP (SHapley Additive exPlanations) values to offer a visual interpretation of these models. Utilizing the latest data from ChEMBL v30, encompassing over 14,364 compounds with hERG data, our binary and multiclassification models outperformed both the previous iteration of Pred-hERG and all publicly available models. Notably, the new version of our tool introduces a regression model for predicting hERG activity (pIC50). The optimal model demonstrated an <i>R</i><sup>2</sup> of 0.61 and an RMSE of 0.48, surpassing the only available regression model in the literature. Pred-hERG 5.0 now offers users a swift, reliable, and user-friendly platform for the early assessment of chemically induced cardiotoxicity through hERG blockage. The tool provides versatile outcomes, including (i) classificatory predictions of hERG blockage with prediction reliability, (ii) multiclassificatory predictions of hERG blockage with reliability, (iii) regression predictions with estimated pIC<sub>50</sub> values, and (iv) probability maps illustrating the contribution of chemical fragments for each prediction. Furthermore, we implemented explainable AI analysis (XAI) to visualize SHAP values, providing insights into the contribution of each feature to binary classification predictions. A consensus prediction calculated based on the predictions of the three developed models is also present to assist the user’s decision-making process. Pred-hERG 5.0 has been designed to be user-friendly, making it accessible to users without computational or programming expertise. The tool is freely available at http://predherg.labmol.com.br.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrestox.3c00400","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00400","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The human Ether-à-go-go-Related Gene (hERG) is a transmembrane protein that regulates cardiac action potential, and its inhibition can induce a potentially deadly cardiac syndrome. In vitro tests help identify hERG blockers at early stages; however, the high cost motivates searching for alternative, cost-effective methods. The primary goal of this study was to enhance the Pred-hERG tool for predicting hERG blockage. To achieve this, we developed new QSAR models that incorporated additional data, updated existing classificatory and multiclassificatory models, and introduced new regression models. Notably, we integrated SHAP (SHapley Additive exPlanations) values to offer a visual interpretation of these models. Utilizing the latest data from ChEMBL v30, encompassing over 14,364 compounds with hERG data, our binary and multiclassification models outperformed both the previous iteration of Pred-hERG and all publicly available models. Notably, the new version of our tool introduces a regression model for predicting hERG activity (pIC50). The optimal model demonstrated an R2 of 0.61 and an RMSE of 0.48, surpassing the only available regression model in the literature. Pred-hERG 5.0 now offers users a swift, reliable, and user-friendly platform for the early assessment of chemically induced cardiotoxicity through hERG blockage. The tool provides versatile outcomes, including (i) classificatory predictions of hERG blockage with prediction reliability, (ii) multiclassificatory predictions of hERG blockage with reliability, (iii) regression predictions with estimated pIC50 values, and (iv) probability maps illustrating the contribution of chemical fragments for each prediction. Furthermore, we implemented explainable AI analysis (XAI) to visualize SHAP values, providing insights into the contribution of each feature to binary classification predictions. A consensus prediction calculated based on the predictions of the three developed models is also present to assist the user’s decision-making process. Pred-hERG 5.0 has been designed to be user-friendly, making it accessible to users without computational or programming expertise. The tool is freely available at http://predherg.labmol.com.br.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释的分类和回归模型加强 hERG 风险评估。
人乙型肝炎相关基因(hERG)是一种调节心脏动作电位的跨膜蛋白,抑制该基因可诱发潜在的致命心脏综合征。体外测试有助于在早期识别 hERG 阻断剂;然而,高昂的成本促使人们寻找成本效益高的替代方法。本研究的主要目标是改进 Pred-hERG 工具,以预测 hERG 阻滞。为此,我们开发了纳入更多数据的新 QSAR 模型,更新了现有的分类和多分类模型,并引入了新的回归模型。值得注意的是,我们整合了 SHAP(SHapley Additive exPlanations)值,为这些模型提供了直观的解释。利用来自 ChEMBL v30 的最新数据(包含超过 14,364 种具有 hERG 数据的化合物),我们的二元和多分类模型的表现优于 Pred-hERG 的上一次迭代和所有公开可用的模型。值得注意的是,新版工具引入了预测 hERG 活性(pIC50)的回归模型。最佳模型的 R2 为 0.61,RMSE 为 0.48,超过了文献中唯一可用的回归模型。现在,Pred-hERG 5.0 为用户提供了一个快速、可靠和用户友好的平台,用于早期评估通过 hERG 阻断引起的化学性心脏毒性。该工具可提供多种结果,包括:(i) 具有预测可靠性的 hERG 阻断分类预测;(ii) 具有可靠性的 hERG 阻断多分类预测;(iii) 具有估计 pIC50 值的回归预测;(iv) 说明每个预测的化学片段贡献的概率图。此外,我们还实施了可解释人工智能分析(XAI),以可视化 SHAP 值,从而深入了解每个特征对二元分类预测的贡献。此外,我们还根据三个已开发模型的预测结果计算出共识预测值,以帮助用户做出决策。Pred-hERG 5.0 的设计对用户非常友好,没有计算或编程专业知识的用户也可以使用。该工具可在 http://predherg.labmol.com.br 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1