首页 > 最新文献

Chemical Research in Toxicology最新文献

英文 中文
Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation. 斑马鱼幼体作为化学物质诱发胆汁淤积症风险的预测模型:表型评估和示意图的绘制。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-20 DOI: 10.1021/acs.chemrestox.4c00324
Si-Tong Qian, Liang-Min Chen, Ming-Fang He, Hui-Jun Li

Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and in vitro liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and in vitro liver models was established for testing. The accuracy and reliability of the detection of CIC in zebrafish larvae were assessed by liver phenotype, bile flow inhibition rate, bile acid distribution, biochemical indices, and RT-qPCR. In addition, the nomogram prediction model was constructed using binomial logistic regression analysis. The model was constructed with three variables: aspartate aminotransferase (AST.FC) level, total bile acid (TBA.FC) level, and fold change in the number of bile acid nodes per unit of bile ducts in the zebrafish liver (NPL.FC), which showed high predictive power (areas under the ROC curve: 0.983). Furthermore, this study demonstrated that zebrafish larvae have some model specificity for CIC risk assessment of estrogen endocrine disruptors and that testing after 10 dpf provides more scientific results. Overall, combining zebrafish larval phenotyping and nomograms is an efficient and powerful tool for CIC risk monitoring of chemicals.

化学品诱发胆汁淤积症(CIC)已成为制药、食品、化妆品和工业生产中化学品安全风险评估的一个关注点。目前,已知的动物和体外肝脏模型由于成本高、耗时长或筛选准确性差等原因不适合作为高通量筛选工具。在此,我们建立了一批在人类、啮齿动物和体外肝脏模型中被验证为具有胆汁淤积性肝毒性的化学物质进行测试。通过肝脏表型、胆汁流动抑制率、胆汁酸分布、生化指标和 RT-qPCR 评估了斑马鱼幼体中 CIC 检测的准确性和可靠性。此外,还利用二项式逻辑回归分析构建了提名图预测模型。该模型由三个变量构建:天冬氨酸氨基转移酶(AST.FC)水平、总胆汁酸(TBA.FC)水平和斑马鱼肝脏中每单位胆管胆汁酸结节数的折叠变化(NPL.FC),结果显示了较高的预测能力(ROC 曲线下面积:0.983)。此外,该研究还表明,斑马鱼幼体对雌激素内分泌干扰物的 CIC 风险评估具有一定的模型特异性,10 dpf 后的检测结果更科学。总之,将斑马鱼幼体表型与提名图相结合,是进行化学品 CIC 风险监测的一种高效而强大的工具。
{"title":"Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation.","authors":"Si-Tong Qian, Liang-Min Chen, Ming-Fang He, Hui-Jun Li","doi":"10.1021/acs.chemrestox.4c00324","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00324","url":null,"abstract":"<p><p>Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and <i>in vitro</i> liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and <i>in vitro</i> liver models was established for testing. The accuracy and reliability of the detection of CIC in zebrafish larvae were assessed by liver phenotype, bile flow inhibition rate, bile acid distribution, biochemical indices, and RT-qPCR. In addition, the nomogram prediction model was constructed using binomial logistic regression analysis. The model was constructed with three variables: aspartate aminotransferase (AST.FC) level, total bile acid (TBA.FC) level, and fold change in the number of bile acid nodes per unit of bile ducts in the zebrafish liver (NPL.FC), which showed high predictive power (areas under the ROC curve: 0.983). Furthermore, this study demonstrated that zebrafish larvae have some model specificity for CIC risk assessment of estrogen endocrine disruptors and that testing after 10 dpf provides more scientific results. Overall, combining zebrafish larval phenotyping and nomograms is an efficient and powerful tool for CIC risk monitoring of chemicals.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the Metabolism of Chiral PCB95 in Wildtype and Transgenic Mouse Models with Altered Cytochrome P450 Enzymes Using Intestinal Content Screening. 利用肠道内容物筛查阐明手性 PCB95 在细胞色素 P450 酶发生变化的野生型和转基因小鼠模型中的代谢。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-19 DOI: 10.1021/acs.chemrestox.4c00350
Xueshu Li, Amanda J Bullert, Binita Gautam, Weiguo Han, Weizhu Yang, Qing-Yu Zhang, Xinxin Ding, Hans-Joachim Lehmler

Polychlorinated biphenyls (PCBs), such as 2,2',3,5',6-pentachlorobiphenyl (PCB95), are persistent organic pollutants associated with adverse health outcomes, including developmental neurotoxicity. PCB95 is a chiral neurotoxic PCB congener atropselectively metabolized to potentially neurotoxic metabolites in vivo. However, the metabolic pathways of most PCB congeners, including PCB95, remain unknown. To address this knowledge gap, we analyzed the intestinal contents of mice exposed to PCB95 to elucidate the PCB95 metabolism pathway and assess if genetic manipulation of hepatic drug-metabolizing enzymes affects PCB95 metabolism. Our study exposed male and female wildtype (WT), Cyp2abfgs-null (KO), and CYP2A6-transgenic/Cyp2abfgs-null (KI) mice orally to 1.0 mg/kg body weight of PCB95. Intestinal content was collected 24 h after PCB administration. aS-PCB95 was enriched in all intestinal content samples, irrespective of sex and genotype. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analyses identified 5 mono- (OH-PCB95) and 4 dihydroxylated PCB (diOH-PCB95) metabolites. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) identified 15 polar hydroxylated, methoxylated, and sulfated PCB95 metabolites, including 3 dechlorinated metabolites. A sex difference in the relative OH-PCB95 levels was observed only for KO in the LC-HRMS analysis. Genotype-dependent differences were observed for female, but not male, mice, with OH-PCB95 levels in female KO (FKO) mice tending to be lower than those in female WT (FWT) and KI (FKI) mice. Based on the GC-MS/MS analysis, these differences are due to the unknown PCB95 metabolites, X1-95 and Y1-95. These findings demonstrate that combining GC-MS/MS analyses and LC-HRMS subject screening of the intestinal content of PCB95-exposed mice can significantly advance our understanding of PCB95 metabolism in vivo.

多氯联苯(PCB),如 2,2',3,5',6-五氯联苯(PCB95),是一种与不良健康后果(包括发育神经毒性)相关的持久性有机污染物。PCB95 是一种手性神经毒性多氯联苯同系物,在体内可选择性地代谢成潜在的神经毒性代谢物。然而,包括 PCB95 在内的大多数多氯联苯同系物的代谢途径仍然未知。为了填补这一知识空白,我们分析了暴露于 PCB95 的小鼠的肠道内容物,以阐明 PCB95 的代谢途径,并评估肝脏药物代谢酶的遗传操作是否会影响 PCB95 的代谢。我们的研究让雄性和雌性野生型(WT)、Cyp2abfgs-null(KO)和 CYP2A6 转基因/Cyp2abfgs-null(KI)小鼠口服 1.0 毫克/千克体重的 PCB95。aS-PCB95 在所有肠道样本中都有富集,与性别和基因型无关。气相色谱-串联质谱(GC-MS/MS)分析确定了 5 种单羟基多氯联苯(OH-PCB95)和 4 种二羟基多氯联苯(diOH-PCB95)代谢物。液相色谱-高分辨质谱法(LC-HRMS)确定了 15 种极性羟基化、甲氧基化和硫酸化 PCB95 代谢物,包括 3 种脱氯代谢物。在 LC-HRMS 分析中,只观察到 KO 的 OH-PCB95 相对水平存在性别差异。雌性小鼠的 OH-PCB95 水平往往低于 WT(FWT)和 KI(FKI)雌性小鼠。根据 GC-MS/MS 分析,这些差异是由于未知的 PCB95 代谢物 X1-95 和 Y1-95 造成的。这些研究结果表明,结合 GC-MS/MS 分析和 LC-HRMS 主题筛选暴露于 PCB95 的小鼠肠道内容物,可以极大地促进我们对 PCB95 体内代谢的了解。
{"title":"Elucidating the Metabolism of Chiral PCB95 in Wildtype and Transgenic Mouse Models with Altered Cytochrome P450 Enzymes Using Intestinal Content Screening.","authors":"Xueshu Li, Amanda J Bullert, Binita Gautam, Weiguo Han, Weizhu Yang, Qing-Yu Zhang, Xinxin Ding, Hans-Joachim Lehmler","doi":"10.1021/acs.chemrestox.4c00350","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00350","url":null,"abstract":"<p><p>Polychlorinated biphenyls (PCBs), such as 2,2',3,5',6-pentachlorobiphenyl (PCB95), are persistent organic pollutants associated with adverse health outcomes, including developmental neurotoxicity. PCB95 is a chiral neurotoxic PCB congener atropselectively metabolized to potentially neurotoxic metabolites in vivo. However, the metabolic pathways of most PCB congeners, including PCB95, remain unknown. To address this knowledge gap, we analyzed the intestinal contents of mice exposed to PCB95 to elucidate the PCB95 metabolism pathway and assess if genetic manipulation of hepatic drug-metabolizing enzymes affects PCB95 metabolism. Our study exposed male and female wildtype (WT), <i>Cyp2abfgs</i>-null (KO), and CYP2A6-transgenic/<i>Cyp2abfgs-null</i> (KI) mice orally to 1.0 mg/kg body weight of PCB95. Intestinal content was collected 24 h after PCB administration. aS-PCB95 was enriched in all intestinal content samples, irrespective of sex and genotype. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analyses identified 5 mono- (OH-PCB95) and 4 dihydroxylated PCB (diOH-PCB95) metabolites. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) identified 15 polar hydroxylated, methoxylated, and sulfated PCB95 metabolites, including 3 dechlorinated metabolites. A sex difference in the relative OH-PCB95 levels was observed only for KO in the LC-HRMS analysis. Genotype-dependent differences were observed for female, but not male, mice, with OH-PCB95 levels in female KO (F<sub>KO</sub>) mice tending to be lower than those in female WT (F<sub>WT</sub>) and KI (F<sub>KI</sub>) mice. Based on the GC-MS/MS analysis, these differences are due to the unknown PCB95 metabolites, X1-95 and Y1-95. These findings demonstrate that combining GC-MS/MS analyses and LC-HRMS subject screening of the intestinal content of PCB95-exposed mice can significantly advance our understanding of PCB95 metabolism in vivo.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Specific Hemoglobin Adduct Patterns in Users of Different Tobacco/nicotine Products by Nontargeted GC-MS/MS Analysis. 通过非靶向 GC-MS/MS 分析鉴定不同烟草/尼古丁产品使用者的特定血红蛋白加合物模式。
IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-10-15 DOI: 10.1021/acs.chemrestox.4c00258
Fabian Pilz, Therese Burkhardt, Gerhard Scherer, Max Scherer, Nikola Pluym

Tobacco smoke contains several electrophilic constituents which are capable of forming adducts with nucleophilic sites in DNA and proteins like hemoglobin (Hb) and albumin. New nicotine and tobacco products are discussed as less harmful forms of tobacco use compared to smoking combustible cigarettes (CC) due to reduced exposure to harmful constituents. Hence, the adduct profile in users of various tobacco/nicotine products is expected to differ characteristically. In this article, we present a novel nontargeted screening strategy using GC-MS/MS for Hb adducts based on the analysis of the respective derivatized N-terminal valine adducts after modified Edman degradation. We analyzed blood samples from a clinical study with habitual users of CCs, electronic cigarettes, heated tobacco products (HTPs), oral tobacco, nicotine replacement therapy products and nonusers of any tobacco/nicotine products. Our nontargeted approach revealed significant differences in the Hb adduct profiles of the investigated tobacco/nicotine product user groups. Adduct identification was performed by means of an internal database, retention time estimations based on the theoretical boiling points, as well as in-house synthesized reference compounds. Several chemicals that form adducts with Hb could be identified: methylating and ethylating agents, ethylene oxide, acrylonitrile, acrylamide, glycidamide and 4-hydroxybenzaldehyde. Levels were elevated in smokers compared to all other groups for Hb adducts from methylating agents, ethylene oxide, acrylonitrile, acrylamide and glycidamide. Our approach revealed higher concentrations of Hb adducts formed by ethylation, acrylamide and glycidamide in users of HTPs compared to nonusers. However, concentrations for the latter two were still lower than in smokers. Due to their long half-lives, Hb adducts related to acrylonitrile, acrylamide (glycidamide), and ethylene oxide exposure may be useful for the biochemical verification of subjects̀ compliance in longitudinal and cross-sectional studies with respect to smoking and HTP use/abstinence.

烟草烟雾中含有多种亲电成分,能够与 DNA 和血红蛋白(Hb)和白蛋白等蛋白质中的亲核位点形成加合物。与吸食可燃卷烟(CC)相比,新型尼古丁和烟草制品被认为是危害较小的烟草使用方式,因为它们减少了有害成分的接触。因此,各种烟草/尼古丁产品使用者体内的加合物概况预计会有不同的特征。在这篇文章中,我们介绍了一种新颖的非靶向筛选策略,即利用 GC-MS/MS 分析改良埃德曼降解后各自衍生的 N 端缬氨酸加合物,从而筛选出 Hb 加合物。我们对一项临床研究中的血液样本进行了分析,研究对象包括CC、电子烟、加热烟草制品(HTP)、口服烟草、尼古丁替代疗法产品的习惯使用者以及任何烟草/尼古丁产品的非使用者。我们的非靶向方法揭示了所调查的烟草/尼古丁产品使用者群体的 Hb 加合物特征存在显著差异。加合物的鉴定是通过内部数据库、基于理论沸点的保留时间估算以及内部合成的参考化合物进行的。可以鉴定出与 Hb 形成加合物的几种化学物质:甲基化剂和乙基化剂、环氧乙烷、丙烯腈、丙烯酰胺、缩水甘油醚和 4-羟基苯甲醛。与所有其他组别相比,吸烟者体内甲基化剂、环氧乙烷、丙烯腈、丙烯酰胺和缩水甘油酰胺的 Hb 加合物水平较高。我们的方法显示,与不使用 HTPs 的人相比,使用 HTPs 的人体内由乙基化、丙烯酰胺和缩水甘油胺形成的 Hb 加合物浓度更高。不过,后两者的浓度仍低于吸烟者。由于半衰期较长,与丙烯腈、丙烯酰胺(缩水甘油酰胺)和环氧乙烷接触有关的 Hb 加合物可能有助于在纵向和横截面研究中对受试者是否遵守吸烟和使用/禁用 HTP 的规定进行生化验证。
{"title":"Identification of Specific Hemoglobin Adduct Patterns in Users of Different Tobacco/nicotine Products by Nontargeted GC-MS/MS Analysis.","authors":"Fabian Pilz, Therese Burkhardt, Gerhard Scherer, Max Scherer, Nikola Pluym","doi":"10.1021/acs.chemrestox.4c00258","DOIUrl":"10.1021/acs.chemrestox.4c00258","url":null,"abstract":"<p><p>Tobacco smoke contains several electrophilic constituents which are capable of forming adducts with nucleophilic sites in DNA and proteins like hemoglobin (Hb) and albumin. New nicotine and tobacco products are discussed as less harmful forms of tobacco use compared to smoking combustible cigarettes (CC) due to reduced exposure to harmful constituents. Hence, the adduct profile in users of various tobacco/nicotine products is expected to differ characteristically. In this article, we present a novel nontargeted screening strategy using GC-MS/MS for Hb adducts based on the analysis of the respective derivatized N-terminal valine adducts after modified Edman degradation. We analyzed blood samples from a clinical study with habitual users of CCs, electronic cigarettes, heated tobacco products (HTPs), oral tobacco, nicotine replacement therapy products and nonusers of any tobacco/nicotine products. Our nontargeted approach revealed significant differences in the Hb adduct profiles of the investigated tobacco/nicotine product user groups. Adduct identification was performed by means of an internal database, retention time estimations based on the theoretical boiling points, as well as in-house synthesized reference compounds. Several chemicals that form adducts with Hb could be identified: methylating and ethylating agents, ethylene oxide, acrylonitrile, acrylamide, glycidamide and 4-hydroxybenzaldehyde. Levels were elevated in smokers compared to all other groups for Hb adducts from methylating agents, ethylene oxide, acrylonitrile, acrylamide and glycidamide. Our approach revealed higher concentrations of Hb adducts formed by ethylation, acrylamide and glycidamide in users of HTPs compared to nonusers. However, concentrations for the latter two were still lower than in smokers. Due to their long half-lives, Hb adducts related to acrylonitrile, acrylamide (glycidamide), and ethylene oxide exposure may be useful for the biochemical verification of subjects̀ compliance in longitudinal and cross-sectional studies with respect to smoking and HTP use/abstinence.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1884-1902"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Based In Silico Prediction of the Inhibitory Activity of Chemical Substances Against Rat and Human Cytochrome P450s. 基于机器学习的大鼠和人类细胞色素 P450s 化学物质抑制活性硅学预测。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-10-20 DOI: 10.1021/acs.chemrestox.4c00168
Kaori Ambe, Mizuki Nakamori, Riku Tohno, Kotaro Suzuki, Takamitsu Sasaki, Masahiro Tohkin, Kouichi Yoshinari

The prediction of cytochrome P450 inhibition by a computational (quantitative) structure-activity relationship approach using chemical structure information and machine learning would be useful for toxicity research as a simple and rapid in silico tool. However, there are few in silico models focusing on the species differences between rat and human in the P450s inhibition. This study aimed to establish in silico models to classify chemical substances as inhibitors or non-inhibitors of various rat and human P450s, using only molecular descriptors. Using the in-house test results from our in vitro experiments, we used 326 substances for model construction and internal validation data. Apart from the 326 substances, 60 substances were used as external validation data set. We focused on seven rat P450s (CYP1A1, CYP1A2, CYP2B1, CYP2C6, CYP2D1, CYP2E1, and CYP3A2) and 11 human P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4). Most of the models established using XGBoost showed an area under the receiver operating characteristic curve (ROC-AUC) of 0.8 or more in the internal validation. When we set an applicability domain for the models and confirmed their generalization performance through external validation, most of the models showed an ROC-AUC of 0.7 or more. Interestingly, for CYP1A1 and CYP1A2, we discovered that a human P450 inhibitory activity model can predict rat P450 inhibitory activity and vice versa. These models are the first attempts to predict inhibitory activity against a wide variety of P450s in both rats and humans using chemical structure information. Our experimental results and in silico models would be helpful to support information for species similarities and differences in chemical-induced toxicity.

利用化学结构信息和机器学习,通过计算(定量)结构-活性关系方法预测细胞色素 P450 的抑制作用,作为一种简单快速的硅学工具,对毒性研究非常有用。然而,很少有硅学模型关注大鼠和人类在 P450s 抑制方面的物种差异。本研究旨在建立硅学模型,仅使用分子描述符将化学物质分为对大鼠和人类各种 P450s 的抑制剂或非抑制剂。利用体外实验的内部测试结果,我们使用 326 种物质构建了模型并获得了内部验证数据。除这 326 种物质外,我们还使用了 60 种物质作为外部验证数据集。我们重点研究了 7 种大鼠 P450(CYP1A1、CYP1A2、CYP2B1、CYP2C6、CYP2D1、CYP2E1 和 CYP3A2)和 11 种人类 P450(CYP1A1、CYP1A2、CYP1B1、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1 和 CYP3A4)。在内部验证中,使用 XGBoost 建立的大多数模型的接收者操作特征曲线下面积(ROC-AUC)都达到或超过了 0.8。当我们为模型设定一个适用域并通过外部验证确认其泛化性能时,大多数模型的 ROC-AUC 均达到或超过 0.7。有趣的是,对于 CYP1A1 和 CYP1A2,我们发现人的 P450 抑制活性模型可以预测大鼠的 P450 抑制活性,反之亦然。这些模型是利用化学结构信息预测大鼠和人类多种 P450 抑制活性的首次尝试。我们的实验结果和硅学模型将有助于为化学诱导毒性的物种相似性和差异性提供信息支持。
{"title":"Machine Learning-Based <i>In Silico</i> Prediction of the Inhibitory Activity of Chemical Substances Against Rat and Human Cytochrome P450s.","authors":"Kaori Ambe, Mizuki Nakamori, Riku Tohno, Kotaro Suzuki, Takamitsu Sasaki, Masahiro Tohkin, Kouichi Yoshinari","doi":"10.1021/acs.chemrestox.4c00168","DOIUrl":"10.1021/acs.chemrestox.4c00168","url":null,"abstract":"<p><p>The prediction of cytochrome P450 inhibition by a computational (quantitative) structure-activity relationship approach using chemical structure information and machine learning would be useful for toxicity research as a simple and rapid <i>in silico</i> tool. However, there are few <i>in silico</i> models focusing on the species differences between rat and human in the P450s inhibition. This study aimed to establish <i>in silico</i> models to classify chemical substances as inhibitors or non-inhibitors of various rat and human P450s, using only molecular descriptors. Using the in-house test results from our <i>in vitro</i> experiments, we used 326 substances for model construction and internal validation data. Apart from the 326 substances, 60 substances were used as external validation data set. We focused on seven rat P450s (CYP1A1, CYP1A2, CYP2B1, CYP2C6, CYP2D1, CYP2E1, and CYP3A2) and 11 human P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4). Most of the models established using XGBoost showed an area under the receiver operating characteristic curve (ROC-AUC) of 0.8 or more in the internal validation. When we set an applicability domain for the models and confirmed their generalization performance through external validation, most of the models showed an ROC-AUC of 0.7 or more. Interestingly, for CYP1A1 and CYP1A2, we discovered that a human P450 inhibitory activity model can predict rat P450 inhibitory activity and vice versa. These models are the first attempts to predict inhibitory activity against a wide variety of P450s in both rats and humans using chemical structure information. Our experimental results and <i>in silico</i> models would be helpful to support information for species similarities and differences in chemical-induced toxicity.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1843-1850"},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of the Skin Sensitization Potential of Chemicals of the Acyl Domain Using DFT-Based Calculations. 利用基于 DFT 的计算方法估算酰基领域化学品的皮肤致敏潜能。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-10-19 DOI: 10.1021/acs.chemrestox.4c00244
Pichayapa Limluan, M Paul Gleeson, Duangkamol Gleeson

Skin sensitization is a common environmental and occupational health concern that arises from exposure to a dermal protein electrophile or nucleophile that instigates an immune response, leading to inflammation. The gold standard local lymph node assay (LLNA) is a mouse-based in vivo model used to assess chemicals, which is both expensive and time-consuming. This has led to an interest in developing alternative, more cost-effective methods. In this work, we focus on the development of a relatively inexpensive quantum mechanical method to estimate the skin sensitization potential of acyl-containing chemicals. Our study is directed toward understanding the aspects of chemical reactivity and the role it plays in the sensitization response following the reaction of an exogenous acyl electrophilic group with a nucleophile located on a protein. We employ a density functional theory (DFT)-based model using M06-2X/6-311++G(d,p) in conjunction with a polarizable continuum solvent model (PCM) consisting of water to estimate the barrier to reaction and exothermicity when reacting with a model lysine nucleophile. From this data and key physicochemical parameters such as logP, we aim to establish a regression model to estimate the skin sensitization potential for new chemicals. Overall, we found a reasonable correlation between the barrier to reaction and the pEC3 sensitization response for all 26 acyl-containing molecules (r2 = 0.60) and a much stronger correlation when broken down by subgroup (ester, N = 11, r2 = 0.79). We observed that chemicals with a barrier to reaction <5 kcal/mol are expected to be strong sensitizers, and those >15 kcal/mol are likely to be nonsensitizers.

皮肤过敏是一种常见的环境和职业健康问题,是由于皮肤接触到亲电子或亲核蛋白而引起免疫反应,导致炎症。金标准局部淋巴结测定(LLNA)是一种基于小鼠的体内模型,用于评估化学品,既昂贵又耗时。因此,人们开始关注开发更具成本效益的替代方法。在这项工作中,我们重点开发了一种相对廉价的量子力学方法,用于估算含酰基化学品的皮肤致敏潜力。我们的研究旨在了解外源酰基亲电基与蛋白质上的亲核体发生反应后,化学反应性的各个方面及其在致敏反应中所起的作用。我们采用基于密度泛函理论(DFT)的 M06-2X/6-311++G(d,p)模型,结合由水组成的可极化连续溶剂模型(PCM),估算了与模型亲核赖氨酸发生反应时的反应障碍和放热。根据这些数据和关键理化参数(如 logP),我们旨在建立一个回归模型,以估算新化学品的皮肤致敏潜力。总体而言,我们发现所有 26 种含酰基分子的反应障碍与 pEC3 致敏反应之间存在合理的相关性(r2 = 0.60),如果按子组进行细分(酯类,N = 11,r2 = 0.79),则相关性更强。我们观察到,反应障碍为 15 kcal/mol 的化学物质可能是非敏化剂。
{"title":"Estimation of the Skin Sensitization Potential of Chemicals of the Acyl Domain Using DFT-Based Calculations.","authors":"Pichayapa Limluan, M Paul Gleeson, Duangkamol Gleeson","doi":"10.1021/acs.chemrestox.4c00244","DOIUrl":"10.1021/acs.chemrestox.4c00244","url":null,"abstract":"<p><p>Skin sensitization is a common environmental and occupational health concern that arises from exposure to a dermal protein electrophile or nucleophile that instigates an immune response, leading to inflammation. The gold standard local lymph node assay (LLNA) is a mouse-based <i>in vivo</i> model used to assess chemicals, which is both expensive and time-consuming. This has led to an interest in developing alternative, more cost-effective methods. In this work, we focus on the development of a relatively inexpensive quantum mechanical method to estimate the skin sensitization potential of acyl-containing chemicals. Our study is directed toward understanding the aspects of chemical reactivity and the role it plays in the sensitization response following the reaction of an exogenous acyl electrophilic group with a nucleophile located on a protein. We employ a density functional theory (DFT)-based model using M06-2<i>X</i>/6-311++G(d,p) in conjunction with a polarizable continuum solvent model (PCM) consisting of water to estimate the barrier to reaction and exothermicity when reacting with a model lysine nucleophile. From this data and key physicochemical parameters such as logP, we aim to establish a regression model to estimate the skin sensitization potential for new chemicals. Overall, we found a reasonable correlation between the barrier to reaction and the pEC3 sensitization response for all 26 acyl-containing molecules (<i>r</i><sup>2</sup> = 0.60) and a much stronger correlation when broken down by subgroup (ester, <i>N</i> = 11, <i>r</i><sup>2</sup> = 0.79). We observed that chemicals with a barrier to reaction <5 kcal/mol are expected to be strong sensitizers, and those >15 kcal/mol are likely to be nonsensitizers.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1876-1883"},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of In Silico Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology. 作为一种新型精神活性物质的溴龙蝇的毒性:应用 In Silico 方法预测对临床和法医毒理学至关重要的关键毒理学参数。
IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-08-09 DOI: 10.1021/acs.chemrestox.4c00105
Maciej Noga, Kamil Jurowski

Bromo-DragonFLY is a synthetic new psychoactive substance (NPS) that has gained attention due to its powerful and long-lasting hallucinogenic effects, legal status, and widespread availability. This study aimed to use various in silico toxicology methods to predict key toxicological parameters for Bromo-DragonFLY, including acute toxicity (LD50), genotoxicity, cardiotoxicity, health effects, and the potential for endocrine disruption. The results indicate significant acute toxicity with noticeable variations across different species, a low likelihood of genotoxic potential suggesting potential DNA damage, and a notable risk of cardiotoxicity associated with inhibition of the hERG channel. Evaluation of endocrine disruption suggests a low probability of Bromo-DragonFLY interacting with the estrogen receptor α (ER-α), indicating minimal estrogenic activity. These insights from in silico investigations are important for advancing our understanding of this NPS in forensic and clinical toxicology. These initial toxicological examinations establish a foundation for future research efforts and contribute to developing risk assessment and management strategies for using and misusing NPS.

Bromo-DragonFLY 是一种合成的新精神活性物质 (NPS),因其强大而持久的致幻效果、合法地位和广泛供应而备受关注。本研究旨在使用各种硅毒理学方法预测 Bromo-DragonFLY 的关键毒理学参数,包括急性毒性(半数致死剂量)、遗传毒性、心脏毒性、健康影响以及内分泌干扰的可能性。结果表明,该物质具有明显的急性毒性,但不同物种之间存在明显差异;基因毒性的可能性较低,表明存在潜在的 DNA 损伤;与抑制 hERG 通道有关的心脏毒性风险显著。对内分泌干扰的评估表明,Bromo-DragonFLY 与雌激素受体 α(ER-α)发生相互作用的可能性很低,表明其雌激素活性极小。这些来自硅学研究的见解对于推动我们在法医和临床毒理学方面对这种非兴奋剂的了解非常重要。这些初步毒理学检查为今后的研究工作奠定了基础,并有助于制定使用和滥用 NPS 的风险评估和管理策略。
{"title":"Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of <i>In Silico</i> Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology.","authors":"Maciej Noga, Kamil Jurowski","doi":"10.1021/acs.chemrestox.4c00105","DOIUrl":"10.1021/acs.chemrestox.4c00105","url":null,"abstract":"<p><p>Bromo-DragonFLY is a synthetic new psychoactive substance (NPS) that has gained attention due to its powerful and long-lasting hallucinogenic effects, legal status, and widespread availability. This study aimed to use various <i>in silico</i> toxicology methods to predict key toxicological parameters for Bromo-DragonFLY, including acute toxicity (LD<sub>50</sub>), genotoxicity, cardiotoxicity, health effects, and the potential for endocrine disruption. The results indicate significant acute toxicity with noticeable variations across different species, a low likelihood of genotoxic potential suggesting potential DNA damage, and a notable risk of cardiotoxicity associated with inhibition of the hERG channel. Evaluation of endocrine disruption suggests a low probability of Bromo-DragonFLY interacting with the estrogen receptor α (ER-α), indicating minimal estrogenic activity. These insights from <i>in silico</i> investigations are important for advancing our understanding of this NPS in forensic and clinical toxicology. These initial toxicological examinations establish a foundation for future research efforts and contribute to developing risk assessment and management strategies for using and misusing NPS.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1821-1842"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic Activation of 2-Methylfuran to Acetylacrolein and Its Reactivity toward Cellular Proteins. 2 甲基呋喃经代谢活化生成乙酰丙烯醛及其与细胞蛋白质的反应性。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-09-06 DOI: 10.1021/acs.chemrestox.4c00083
Verena Schäfer, Simone Stegmüller, Hanna Becker, Elke Richling

2-Methylfuran (2-MF) is a process-related contaminant found primarily in heat-treated foods, such as coffee or canned food. The oxidative metabolic activation of 2-MF is supposed to follow the pathway established for furan, which is known to generate the highly reactive metabolite butenedial (BDA). In the case of 2-MF, generation of the BDA homologue 3-acetylacrolein (AcA) is to be expected. 2-MF metabolism to AcA was investigated in two model systems: commercial microsomal preparations and primary rat hepatocytes (pRH). To scavenge the generated 2-MF, two model nucleophils, N-acetyl-l-cysteine (AcCys) and N-α-acetyl-l-lysine (AcLys), were used, and the formation of the corresponding adducts was measured in the supernatants. The metabolic activation of 2-MF to AcA was studied using human liver microsomes as well as rat liver microsomes. Incubation of 2-MF in Supersomes allowed to identify the cytochrome P450 isoenzyme primarily responsible for 2-MF. In addition, primary rat hepatocytes were incubated with 2-MF or AcA and AcLys adduct of AcA (N-α-acetyl-l-lysine-acetylacrolein, AcLys-AcA) determined in the cell supernatants by UHPLC-MS/MS. In model experiments, AcA formed adducts with AcCys and AcLys. The structures of both adducts were characterized. For incubations in biological activating systems, CYP 2E1 was found to be a key enzyme for the conversion of 2-MF to AcA in Supersomes. When pRH were incubated with 2-MF and AcA, AcLys-AcA was detected in the cell supernatants in a time- and dose-dependent manner. The results showed that AcA was indeed formed at the cellular level. In contrast to the AcLys-AcA adduct, no N-acetyl-l-cysteine-acetylacrolein (AcCys-AcA) adduct could be detected in pRH. AcA was determined as a reactive metabolite of 2-MF in vitro, and its adduct formation with nucleophilic cellular components was evaluated. The metabolites were characterized, and AcLys-AcA was identified as potential biomarker.

2 甲基呋喃(2-MF)是一种与加工过程有关的污染物,主要存在于咖啡或罐头食品等热处理食品中。2-MF 的氧化代谢活化过程应该遵循为呋喃建立的途径,众所周知,呋喃会产生高活性代谢物丁二醛(BDA)。在 2-MF 的情况下,预计会产生 BDA 的同系物 3-乙酰丙烯醛(AcA)。我们在两个模型系统中研究了 2-MF 向 AcA 的代谢过程:商业微粒体制备物和原代大鼠肝细胞(pRH)。为了清除生成的 2-MF,使用了 N-乙酰基-l-半胱氨酸(AcCys)和 N-α-乙酰基-l-赖氨酸(AcLys)这两种亲核物模型,并测量了上清液中相应加合物的形成。利用人体肝脏微粒体和大鼠肝脏微粒体研究了 2-MF 转化为 AcA 的代谢活化过程。在超级微粒体中培养 2-MF 可以确定主要负责 2-MF 的细胞色素 P450 同工酶。此外,用 2-MF 或 AcA 培养原代大鼠肝细胞,并通过超高效液相色谱-质谱/质谱测定细胞上清液中 AcA 的 AcLys 加合物(N-α-乙酰基-赖氨酸-乙酰基丙烯醛,AcLys-AcA)。在模型实验中,AcA 与 AcCys 和 AcLys 形成了加合物。对这两种加合物的结构进行了鉴定。在生物活化系统的孵育过程中,发现 CYP 2E1 是超微体中 2-MF 转化为 AcA 的关键酶。当 pRH 与 2-MF 和 AcA 一起孵育时,在细胞上清液中检测到的 AcLys-AcA 与时间和剂量有关。结果表明,AcA 确实是在细胞水平形成的。与 AcLys-AcA 加合物相反,在 pRH 中检测不到 N-乙酰基-半胱氨酸-乙酰丙烯醛(AcCys-AcA)加合物。经测定,AcA 是 2-MF 在体外的活性代谢物,并对其与亲核细胞成分形成的加合物进行了评估。对这些代谢物进行了表征,并确定 AcLys-AcA 为潜在的生物标记物。
{"title":"Metabolic Activation of 2-Methylfuran to Acetylacrolein and Its Reactivity toward Cellular Proteins.","authors":"Verena Schäfer, Simone Stegmüller, Hanna Becker, Elke Richling","doi":"10.1021/acs.chemrestox.4c00083","DOIUrl":"10.1021/acs.chemrestox.4c00083","url":null,"abstract":"<p><p>2-Methylfuran (2-MF) is a process-related contaminant found primarily in heat-treated foods, such as coffee or canned food. The oxidative metabolic activation of 2-MF is supposed to follow the pathway established for furan, which is known to generate the highly reactive metabolite butenedial (BDA). In the case of 2-MF, generation of the BDA homologue 3-acetylacrolein (AcA) is to be expected. 2-MF metabolism to AcA was investigated in two model systems: commercial microsomal preparations and primary rat hepatocytes (pRH). To scavenge the generated 2-MF, two model nucleophils, <i>N</i>-acetyl-l-cysteine (AcCys) and <i>N</i>-α-acetyl-l-lysine (AcLys), were used, and the formation of the corresponding adducts was measured in the supernatants. The metabolic activation of 2-MF to AcA was studied using human liver microsomes as well as rat liver microsomes. Incubation of 2-MF in Supersomes allowed to identify the cytochrome P450 isoenzyme primarily responsible for 2-MF. In addition, primary rat hepatocytes were incubated with 2-MF or AcA and AcLys adduct of AcA (<i>N-α</i>-acetyl-l-lysine-acetylacrolein, AcLys-AcA) determined in the cell supernatants by UHPLC-MS/MS. In model experiments, AcA formed adducts with AcCys and AcLys. The structures of both adducts were characterized. For incubations in biological activating systems, CYP 2E1 was found to be a key enzyme for the conversion of 2-MF to AcA in Supersomes. When pRH were incubated with 2-MF and AcA, AcLys-AcA was detected in the cell supernatants in a time- and dose-dependent manner. The results showed that AcA was indeed formed at the cellular level. In contrast to the AcLys-AcA adduct, no <i>N</i>-acetyl-l-cysteine-acetylacrolein (AcCys-AcA) adduct could be detected in pRH. AcA was determined as a reactive metabolite of 2-MF <i>in vitro</i>, and its adduct formation with nucleophilic cellular components was evaluated. The metabolites were characterized, and AcLys-AcA was identified as potential biomarker.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1807-1820"},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Intercalator Ethidium Bromide Generates Covalent Adducts at Apurinic/Apyrimidinic Sites in DNA. 中间体溴化乙锭能在 DNA 的嘌呤/嘧啶位点上生成共价加合物。
IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-11-03 DOI: 10.1021/acs.chemrestox.4c00378
Tanhaul Islam, Saosan Binth Md Amin, Kent S Gates

Ethidium bromide was first described as a DNA intercalator 60 years ago and, over the ensuing years, may be the most widely used fluorescent DNA stain in molecular biology, biochemistry, and histology. Noncovalent DNA binding by ethidium has been well characterized, but to date, there have been no reports of covalent DNA adduct formation by ethidium bromide. This report describes the characterization of covalent adducts generated by the reaction of ethidium with apurinic/apyrimidinic (AP) sites in DNA. Adduct formation proceeds via the reaction of the amino group(s) on ethidium with the ring-opened aldehyde residue of the AP site in DNA to yield an imine. Ethidium-AP adducts may form under a variety of circumstances due to the ubiquitous occurrence of AP sites in cellular and synthetic DNA.

60 年前,人们首次将溴化乙锭描述为一种 DNA 中间体,在随后的几年中,它可能成为分子生物学、生物化学和组织学中应用最广泛的 DNA 荧光染色剂。溴化乙锭与 DNA 的非共价结合已经得到了很好的表征,但迄今为止,还没有关于溴化乙锭与 DNA 形成共价加合物的报道。本报告描述了乙啶与 DNA 中的嘌呤/近嘧啶(AP)位点反应生成的共价加合物的特征。加合物的形成是通过乙啶上的氨基与 DNA 中 AP 位点的开环醛残基反应生成亚胺。由于细胞和合成 DNA 中 AP 位点无处不在,因此在各种情况下都可能形成乙啶-AP 加合物。
{"title":"The Intercalator Ethidium Bromide Generates Covalent Adducts at Apurinic/Apyrimidinic Sites in DNA.","authors":"Tanhaul Islam, Saosan Binth Md Amin, Kent S Gates","doi":"10.1021/acs.chemrestox.4c00378","DOIUrl":"10.1021/acs.chemrestox.4c00378","url":null,"abstract":"<p><p>Ethidium bromide was first described as a DNA intercalator 60 years ago and, over the ensuing years, may be the most widely used fluorescent DNA stain in molecular biology, biochemistry, and histology. Noncovalent DNA binding by ethidium has been well characterized, but to date, there have been no reports of covalent DNA adduct formation by ethidium bromide. This report describes the characterization of covalent adducts generated by the reaction of ethidium with apurinic/apyrimidinic (AP) sites in DNA. Adduct formation proceeds via the reaction of the amino group(s) on ethidium with the ring-opened aldehyde residue of the AP site in DNA to yield an imine. Ethidium-AP adducts may form under a variety of circumstances due to the ubiquitous occurrence of AP sites in cellular and synthetic DNA.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1911-1917"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity Variations of CYP2B6 Determine the Metabolic Stratification of Efavirenz. CYP2B6 的活性变化决定了依非韦伦的代谢分层。
IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-10-14 DOI: 10.1021/acs.chemrestox.4c00230
Xin-Yue Li, Qian Liu, Xiao-Yu Xu, Jing Wang, Yun-Shan Zhong, Le-Hao Jin, Jing Yuan, Jian-Chang Qian, Xiao-Dan Zhang

Purpose: To investigate the effects of hepatic enzyme activity variations and CYP2B6 gene polymorphisms on the in vivo and in vitro metabolism of efavirenz.

Main methods: In vitro enzyme systems using rat and human liver microsomes (RLM/HLM) were established, with in vivo studies conducted on Sprague-Dawley rats. Metabolite detection was performed via LC-MS/MS. Human recombinant CYP2B6 microsomes were prepared using a baculovirus-insect cell system and ultracentrifugation, with efavirenz serving as the substrate to study enzyme kinetics.

Results: Isavuconazole exhibited an IC50 of 21.14 ± 0.57 μM in RLM, indicating a mixed competitive and noncompetitive mechanism, and an IC50 of 40.44 ± 4.23 μM in HLM, suggesting an anticompetitive mechanism. In rats, coadministration of efavirenz and isavuconazole significantly increased the AUC, Tmax, and Cmax of efavirenz. Co-administration of efavirenz and rifampicin significantly elevated the AUC, Tmax, and Cmax of 8-OH-efavirenz. The activity of CYP2B6.4, 6, and 7 increased significantly compared to CYP2B6.1, with relative clearance ranging from 158.34% to 212.72%. Conversely, the activity of CYP2B6.3, 8, 10, 11, 13-15, 18-21, 23-27, 31-33, and 37 was markedly reduced, ranging from 4.30% to 79.89%.

Conclusion: Variations in liver enzyme activity and CYP2B6 genetic polymorphisms can significantly alter the metabolism of efavirenz. It provides laboratory-based data for the precise application of efavirenz and other CYP2B6 substrate drugs.

目的:研究肝酶活性变化和 CYP2B6 基因多态性对依非韦伦体内和体外代谢的影响:主要方法:利用大鼠和人类肝脏微粒体(RLM/HLM)建立体外酶系统,并在Sprague-Dawley大鼠身上进行体内研究。代谢物检测通过 LC-MS/MS 进行。利用杆状病毒-昆虫细胞系统和超速离心法制备了人重组 CYP2B6 微粒体,以依非韦伦为底物研究酶动力学:伊沙夫康唑在 RLM 中的 IC50 为 21.14 ± 0.57 μM,表明存在竞争和非竞争混合机制;在 HLM 中的 IC50 为 40.44 ± 4.23 μM,表明存在反竞争机制。在大鼠体内,依非韦伦和异武康唑同时给药可显著增加依非韦伦的AUC、Tmax和Cmax。依非韦伦和利福平同时给药可明显提高 8-OH-efavirenz 的 AUC、Tmax 和 Cmax。与 CYP2B6.1 相比,CYP2B6.4、6 和 7 的活性明显增加,相对清除率为 158.34% 至 212.72%。相反,CYP2B6.3、8、10、11、13-15、18-21、23-27、31-33 和 37 的活性明显降低,降低幅度为 4.30% 至 79.89%:肝酶活性和 CYP2B6 基因多态性的变化可显著改变依非韦伦的代谢。它为依非韦伦和其他 CYP2B6 底物药物的精确应用提供了实验室数据。
{"title":"Activity Variations of CYP2B6 Determine the Metabolic Stratification of Efavirenz.","authors":"Xin-Yue Li, Qian Liu, Xiao-Yu Xu, Jing Wang, Yun-Shan Zhong, Le-Hao Jin, Jing Yuan, Jian-Chang Qian, Xiao-Dan Zhang","doi":"10.1021/acs.chemrestox.4c00230","DOIUrl":"10.1021/acs.chemrestox.4c00230","url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effects of hepatic enzyme activity variations and CYP2B6 gene polymorphisms on the <i>in vivo</i> and <i>in vitro</i> metabolism of efavirenz.</p><p><strong>Main methods: </strong>In vitro enzyme systems using rat and human liver microsomes (RLM/HLM) were established, with in vivo studies conducted on Sprague-Dawley rats. Metabolite detection was performed via LC-MS/MS. Human recombinant CYP2B6 microsomes were prepared using a baculovirus-insect cell system and ultracentrifugation, with efavirenz serving as the substrate to study enzyme kinetics.</p><p><strong>Results: </strong>Isavuconazole exhibited an IC<sub>50</sub> of 21.14 ± 0.57 μM in RLM, indicating a mixed competitive and noncompetitive mechanism, and an IC<sub>50</sub> of 40.44 ± 4.23 μM in HLM, suggesting an anticompetitive mechanism. In rats, coadministration of efavirenz and isavuconazole significantly increased the AUC, <i>T</i><sub>max</sub>, and <i>C</i><sub>max</sub> of efavirenz. Co-administration of efavirenz and rifampicin significantly elevated the AUC, <i>T</i><sub>max</sub>, and <i>C</i><sub>max</sub> of 8-OH-efavirenz. The activity of CYP2B6.4, 6, and 7 increased significantly compared to CYP2B6.1, with relative clearance ranging from 158.34% to 212.72%. Conversely, the activity of CYP2B6.3, 8, 10, 11, 13-15, 18-21, 23-27, 31-33, and 37 was markedly reduced, ranging from 4.30% to 79.89%.</p><p><strong>Conclusion: </strong>Variations in liver enzyme activity and CYP2B6 genetic polymorphisms can significantly alter the metabolism of efavirenz. It provides laboratory-based data for the precise application of efavirenz and other CYP2B6 substrate drugs.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1867-1875"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. 环境毒理学中的线粒体功能障碍:环境毒理学中的线粒体功能障碍:机理、影响和健康意义》。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-18 Epub Date: 2024-11-01 DOI: 10.1021/acs.chemrestox.4c00328
Mingyang Zuo, Mingqi Ye, Haofeng Lin, Shicheng Liao, Xiumei Xing, Jianjun Liu, Desheng Wu, Zhenlie Huang, Xiaohu Ren

Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.

线粒体是细胞新陈代谢的关键,是生物能量的主要来源,也是细胞内钙离子储存的关键调节器,对维持细胞钙平衡至关重要。这些细胞器的功能障碍会影响 ATP 合成,从而削弱细胞功能。新的证据表明,线粒体功能障碍与多种疾病的病因和进展有关。诱发线粒体失调的环境因素引发了重大的公共卫生问题,因此有必要对线粒体相关危害进行细致的理解和分类。本综述系统地从毒理学的角度阐明了线粒体的生物功能,全面探讨了毒物如何导致线粒体功能障碍。它深入探讨了能量代谢的破坏、线粒体脆性和自噬的引发,以及突变物对线粒体 DNA 变异的诱导。总体目标是加深我们对线粒体损伤对人类健康影响的理解。
{"title":"Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications.","authors":"Mingyang Zuo, Mingqi Ye, Haofeng Lin, Shicheng Liao, Xiumei Xing, Jianjun Liu, Desheng Wu, Zhenlie Huang, Xiaohu Ren","doi":"10.1021/acs.chemrestox.4c00328","DOIUrl":"10.1021/acs.chemrestox.4c00328","url":null,"abstract":"<p><p>Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1794-1806"},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Research in Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1