Improving Data Throughput of CubeSats Through Variable Power Modulation

Ali Al Mahmood;Prashanth R. Marpu
{"title":"Improving Data Throughput of CubeSats Through Variable Power Modulation","authors":"Ali Al Mahmood;Prashanth R. Marpu","doi":"10.1109/JMASS.2024.3355754","DOIUrl":null,"url":null,"abstract":"Nanosatellites, in particular, CubeSats, suffer from limited power and communication capabilities, which creates data throughput (DT) limitations imposing challenges on developers in implementing high data generating payloads, such as the ones deployed in Earth observatory missions. The study presents a framework—variable power modulation (VPM)—that involves varying the transmitter’ s output power within the adjustable range, such that in the case of power availability, the transmission output power is increased accordingly. VPM allows optimal derivation of power for the transceiver, leading in an increase in the average pass duration, thereby providing higher DT. The implementation of VPM involves initiating communication with ground stations at lower elevation angles. However, this approach necessitates a thorough examination of the impact of small-scale fading, particularly Rician Fading, which can affect the signal reliability. In addition to VPM, the study also explores the integration of variable coding and modulation (VCM), a standard practice in communication systems. This article provides a comprehensive analysis of how VPM and VCM can collaborate to enhance the DT of CubeSats. Results from the study indicate that VPM can increase the DT of a standard 1U CubeSat by approximately 43%, while VCM alone can boost it by around 250%. When both VPM and VCM are combined, the DT experiences a remarkable improvement of approximately 340%. However, it is worth noting that the introduction of Rician Fading has a modest adverse effect, leading to a reduction in DT of up to 19%. It is important to highlight that while VPM does not necessitate complex or customized components for CubeSat adoption, it does require transceivers with in-flight configurability. Additionally, it is crucial to consider potential tradeoffs in link reliability when applying the proposed framework, as it can impact this aspect in certain scenarios.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 2","pages":"85-93"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10403925/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosatellites, in particular, CubeSats, suffer from limited power and communication capabilities, which creates data throughput (DT) limitations imposing challenges on developers in implementing high data generating payloads, such as the ones deployed in Earth observatory missions. The study presents a framework—variable power modulation (VPM)—that involves varying the transmitter’ s output power within the adjustable range, such that in the case of power availability, the transmission output power is increased accordingly. VPM allows optimal derivation of power for the transceiver, leading in an increase in the average pass duration, thereby providing higher DT. The implementation of VPM involves initiating communication with ground stations at lower elevation angles. However, this approach necessitates a thorough examination of the impact of small-scale fading, particularly Rician Fading, which can affect the signal reliability. In addition to VPM, the study also explores the integration of variable coding and modulation (VCM), a standard practice in communication systems. This article provides a comprehensive analysis of how VPM and VCM can collaborate to enhance the DT of CubeSats. Results from the study indicate that VPM can increase the DT of a standard 1U CubeSat by approximately 43%, while VCM alone can boost it by around 250%. When both VPM and VCM are combined, the DT experiences a remarkable improvement of approximately 340%. However, it is worth noting that the introduction of Rician Fading has a modest adverse effect, leading to a reduction in DT of up to 19%. It is important to highlight that while VPM does not necessitate complex or customized components for CubeSat adoption, it does require transceivers with in-flight configurability. Additionally, it is crucial to consider potential tradeoffs in link reliability when applying the proposed framework, as it can impact this aspect in certain scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可变功率调制提高立方体卫星的数据吞吐量
超小型卫星,特别是立方体卫星的功率和通信能力有限,这就造成了数据吞吐量(DT)的限制,给开发人员实施高数据生成有效载荷(如地球观测任务中部署的有效载荷)带来了挑战。这项研究提出了一种框架--可变功率调制(VPM)--涉及在可调范围内改变发射机的输出功率,这样在功率可用的情况下,传输输出功率就会相应增加。VPM 可以优化收发器的功率,从而增加平均通过时间,提高 DT 值。VPM 的实施涉及在较低仰角启动与地面站的通信。然而,这种方法需要彻底检查小尺度衰落的影响,特别是会影响信号可靠性的 Rician Fading。除 VPM 外,该研究还探讨了可变编码和调制(VCM)的整合,这是通信系统中的一种标准做法。本文全面分析了 VPM 和 VCM 如何协同增强立方体卫星的 DT。研究结果表明,VPM 可将标准 1U 立方体卫星的 DT 提高约 43%,而单靠 VCM 可将 DT 提高约 250%。当 VPM 和 VCM 结合使用时,DT 显著提高了约 340%。不过,值得注意的是,引入瑞ician Fading 会产生适度的不利影响,导致 DT 降低达 19%。需要强调的是,虽然 VPM 并不要求立方体卫星采用复杂或定制的组件,但它确实需要具有飞行中可配置性的收发器。此外,在应用拟议框架时,必须考虑链路可靠性方面的潜在权衡,因为在某些情况下,它可能会影响链路可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1