Chitosan-based glycated polyampholyte nanogels for copper-catalysed Fenton-like reaction†

Yeonjoo Jung, Eunseo Lee, So-Lee Baek and Sang-Min Lee
{"title":"Chitosan-based glycated polyampholyte nanogels for copper-catalysed Fenton-like reaction†","authors":"Yeonjoo Jung, Eunseo Lee, So-Lee Baek and Sang-Min Lee","doi":"10.1039/D4LP00055B","DOIUrl":null,"url":null,"abstract":"<p >For several decades, there has been great interest in the application of polysaccharide nanogels as nanoscale platforms that integrate polymer scaffolds to confer distinctive biochemical properties. Notably, nanogels, utilizing metal coordination as an efficient cross-linking strategy to enhance structural integrity and responsiveness, have emerged as nanoscale catalysts, broadening their utility in controlled drug delivery, sensing, and biomedical applications. In this study, we present a facile method for preparing chemically modified nanogels based on chitosan, facilitated by Cu(<small>II</small>) coordination for a Fenton-like reaction. The chitosan scaffold undergoes modifications through ethylenediaminetetraacetate (EDTA) conjugation and non-enzymatic glycation, yielding water-soluble structures across a wide pH range. Cu(<small>II</small>) chelation facilitates coordination-mediated cross-linking, resulting in the formation of nanogels with multiple Cu(<small>II</small>)-chelated domains that resemble artificial enzymes. The resulting Cu(<small>II</small>)-containing nanostructures exhibit altered catalytic activity attributed to the distinctive chemical environment of self-folded polysaccharide scaffolds. Spectroscopic monitoring reveals different kinetic pathways in Cu(<small>II</small>)-catalysed Fenton-like reactions mediated by self-folded polysaccharide-based nanostructures containing Cu(<small>II</small>)-chelating active sites. These results demonstrate the potential of polysaccharide nanogels as advanced materials with versatile functionalities in catalytic applications.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 3","pages":" 365-373"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00055b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00055b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For several decades, there has been great interest in the application of polysaccharide nanogels as nanoscale platforms that integrate polymer scaffolds to confer distinctive biochemical properties. Notably, nanogels, utilizing metal coordination as an efficient cross-linking strategy to enhance structural integrity and responsiveness, have emerged as nanoscale catalysts, broadening their utility in controlled drug delivery, sensing, and biomedical applications. In this study, we present a facile method for preparing chemically modified nanogels based on chitosan, facilitated by Cu(II) coordination for a Fenton-like reaction. The chitosan scaffold undergoes modifications through ethylenediaminetetraacetate (EDTA) conjugation and non-enzymatic glycation, yielding water-soluble structures across a wide pH range. Cu(II) chelation facilitates coordination-mediated cross-linking, resulting in the formation of nanogels with multiple Cu(II)-chelated domains that resemble artificial enzymes. The resulting Cu(II)-containing nanostructures exhibit altered catalytic activity attributed to the distinctive chemical environment of self-folded polysaccharide scaffolds. Spectroscopic monitoring reveals different kinetic pathways in Cu(II)-catalysed Fenton-like reactions mediated by self-folded polysaccharide-based nanostructures containing Cu(II)-chelating active sites. These results demonstrate the potential of polysaccharide nanogels as advanced materials with versatile functionalities in catalytic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于铜催化芬顿样反应的壳聚糖基糖化聚酰胺纳米凝胶†
几十年来,人们对多糖纳米凝胶作为纳米级平台的应用产生了浓厚的兴趣,这种平台整合了聚合物支架,可赋予其独特的生物化学特性。值得注意的是,纳米凝胶利用金属配位作为一种有效的交联策略来增强结构的完整性和响应性,已成为纳米级催化剂,拓宽了其在可控药物输送、传感和生物医学应用中的用途。在本研究中,我们介绍了一种基于壳聚糖制备化学修饰纳米凝胶的简便方法,该方法通过 Cu(II)配位促进 Fenton 类反应。壳聚糖支架通过乙二胺四乙酸盐(EDTA)共轭和非酶糖化作用进行改性,在很宽的 pH 值范围内产生水溶性结构。铜(II)螯合促进了配位介导的交联,从而形成了具有多个铜(II)螯合结构域的纳米凝胶,这些结构域与人工酶类相似。由此产生的含 Cu(II)纳米结构显示出改变的催化活性,这归因于自折叠多糖支架的独特化学环境。光谱监测显示,在含有 Cu(II)螯合活性位点的自折叠多糖基纳米结构介导的 Cu(II)催化 Fenton 类反应中,存在不同的动力学途径。这些结果证明了多糖纳米凝胶作为具有多种功能的先进材料在催化应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of aromatic to quinoidal transformation on the degradation kinetics of imine-based semiconducting polymers† Adhesive-less bonding of incompatible thermosetting materials† Polymer-based solid electrolyte interphase for stable lithium metal anodes† An injectable, self-healing, polysaccharide-based antioxidative hydrogel for wound healing†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1