Agnes C. Morrissey, Vishakya Jayalatharachchi, Lukas Michalek, Prasanna Egodawatta, Neomy Zaquen, Laura Delafresnaye and Christopher Barner-Kowollik
{"title":"A bioinspired approach to reversibly metal binding interfaces†","authors":"Agnes C. Morrissey, Vishakya Jayalatharachchi, Lukas Michalek, Prasanna Egodawatta, Neomy Zaquen, Laura Delafresnaye and Christopher Barner-Kowollik","doi":"10.1039/D4LP00010B","DOIUrl":null,"url":null,"abstract":"<p >We introduce a bioinspired materials system that is capable of effectively coating surfaces, while concomitantly allowing metal ions to be reversibly bound. Specifically, we prepare a nitrogen-ligand carrying <small>L</small>-3,4-dihydroxyphenylalanine (<small>L</small>-DOPA) derivate, which can readily crosslink in aqueous systems with effective adhesion onto silicon wafers as well as stone wool fibers. Critically, the introduced system allows for reversible binding of the metal species (such as zinc cations) from aqueous solution. The reversibly binding surfaces are carefully assessed towards their metal ion binding efficiency – in contrast to non-ligand carrying coatings or uncoated surfaces – <em>via</em> surface sensitive analytical methods such as X-ray photoelectron spectroscopy, making them highly attractive candidates for applications in urban storm water filtration systems.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 3","pages":" 490-496"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00010b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00010b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a bioinspired materials system that is capable of effectively coating surfaces, while concomitantly allowing metal ions to be reversibly bound. Specifically, we prepare a nitrogen-ligand carrying L-3,4-dihydroxyphenylalanine (L-DOPA) derivate, which can readily crosslink in aqueous systems with effective adhesion onto silicon wafers as well as stone wool fibers. Critically, the introduced system allows for reversible binding of the metal species (such as zinc cations) from aqueous solution. The reversibly binding surfaces are carefully assessed towards their metal ion binding efficiency – in contrast to non-ligand carrying coatings or uncoated surfaces – via surface sensitive analytical methods such as X-ray photoelectron spectroscopy, making them highly attractive candidates for applications in urban storm water filtration systems.
我们介绍了一种生物启发材料系统,它能够有效地涂覆表面,同时允许金属离子可逆地结合在一起。具体来说,我们制备了一种携带 L-3,4-二羟基苯丙氨酸(L-DOPA)衍生物的氮配体,这种衍生物在水性体系中很容易交联,能有效附着在硅晶片和岩棉纤维上。最重要的是,引入的系统可以从水溶液中可逆地结合金属物种(如锌阳离子)。通过 X 射线光电子能谱等表面敏感分析方法,对可逆结合表面的金属离子结合效率进行了仔细评估--与不携带配体的涂层或无涂层表面形成鲜明对比,使其成为城市雨水过滤系统中极具吸引力的应用候选材料。