{"title":"Monotonicity of the logarithmic energy for random matrices","authors":"Djalil Chafaï, Benjamin Dadoun, Pierre Youssef","doi":"10.1142/s2010326324500084","DOIUrl":null,"url":null,"abstract":"<p>It is well known that the semi-circle law, which is the limiting distribution in the Wigner theorem, is the minimizer of the logarithmic energy penalized by the second moment. A very similar fact holds for the Girko and Marchenko–Pastur theorems. In this work, we shed the light on an intriguing phenomenon suggesting that this functional is monotonic along the mean empirical spectral distribution in terms of the matrix dimension. This is reminiscent of the monotonicity of the Boltzmann entropy along the Boltzmann equation, the monotonicity of the free energy along ergodic Markov processes, and the Shannon monotonicity of entropy or free entropy along the classical or free central limit theorem. While we only verify this monotonicity phenomenon for the Gaussian unitary ensemble, the complex Ginibre ensemble, and the square Laguerre unitary ensemble, numerical simulations suggest that it is actually more universal. We obtain along the way explicit formulas of the logarithmic energy of the models which can be of independent interest.</p>","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"127 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500084","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that the semi-circle law, which is the limiting distribution in the Wigner theorem, is the minimizer of the logarithmic energy penalized by the second moment. A very similar fact holds for the Girko and Marchenko–Pastur theorems. In this work, we shed the light on an intriguing phenomenon suggesting that this functional is monotonic along the mean empirical spectral distribution in terms of the matrix dimension. This is reminiscent of the monotonicity of the Boltzmann entropy along the Boltzmann equation, the monotonicity of the free energy along ergodic Markov processes, and the Shannon monotonicity of entropy or free entropy along the classical or free central limit theorem. While we only verify this monotonicity phenomenon for the Gaussian unitary ensemble, the complex Ginibre ensemble, and the square Laguerre unitary ensemble, numerical simulations suggest that it is actually more universal. We obtain along the way explicit formulas of the logarithmic energy of the models which can be of independent interest.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.