{"title":"Combined exposure to CO2 and H2S significantly reduces the performance of the Mediterranean seagrass Posidonia oceanica: Evidence from a volcanic vent","authors":"Geraldina Signa, Valentina Sciutteri, Agostino Tomasello, Valentina Costa, Silvia Casabianca, Giovanna Cilluffo, Cristina Andolina, Salvatrice Vizzini","doi":"10.1002/lol2.10368","DOIUrl":null,"url":null,"abstract":"<p>Although seagrasses are expected to thrive in future acidified oceans by overcoming low CO<sub>2</sub> diffusion into plant tissues, the co-occurrence of environmental stressors may affect their growth. Volcanic CO<sub>2</sub> vents are often associated with toxic gases and metal-rich fluids representing ideal sites to assess the effects of multiple stressors. We evaluated the response of <i>Posidonia oceanica</i> growing near shallow CO<sub>2</sub> vents characterized by H<sub>2</sub>S spill-out by comparing meadow structure and phenology to an area with no gas emissions. Seagrass descriptors at meadow, shoot and leaf level indicated that <i>P. oceanica</i> experienced stressful conditions at the vent area, in clear contrast to the flourishing features of <i>P. oceanica</i> previously described at CO<sub>2</sub> vents with no evidence of toxic inputs. Furthermore, the reduction in both leaf δ<sup>34</sup>S and growth at the vent area indicates that sulfide intrusion occurs and affects seagrass growth performance, dampening the expected beneficial effects of high CO<sub>2</sub> levels.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10368","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10368","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although seagrasses are expected to thrive in future acidified oceans by overcoming low CO2 diffusion into plant tissues, the co-occurrence of environmental stressors may affect their growth. Volcanic CO2 vents are often associated with toxic gases and metal-rich fluids representing ideal sites to assess the effects of multiple stressors. We evaluated the response of Posidonia oceanica growing near shallow CO2 vents characterized by H2S spill-out by comparing meadow structure and phenology to an area with no gas emissions. Seagrass descriptors at meadow, shoot and leaf level indicated that P. oceanica experienced stressful conditions at the vent area, in clear contrast to the flourishing features of P. oceanica previously described at CO2 vents with no evidence of toxic inputs. Furthermore, the reduction in both leaf δ34S and growth at the vent area indicates that sulfide intrusion occurs and affects seagrass growth performance, dampening the expected beneficial effects of high CO2 levels.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.