Rebecca J. Even, Megan B. Machmuller, Jocelyn M. Lavallee, Jane T. Zelikova, M. Francesca Cotrufo
{"title":"Large errors in common soil carbon measurements due to sample processing","authors":"Rebecca J. Even, Megan B. Machmuller, Jocelyn M. Lavallee, Jane T. Zelikova, M. Francesca Cotrufo","doi":"10.5194/egusphere-2024-1470","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> To build confidence in the efficacy of soil carbon (C) crediting programs, precise quantification of soil organic carbon C (SOC) is critical. Detecting a true change in SOC after a management shift has occurred, specifically in agricultural lands, is difficult as it requires robust soil sampling and soil processing procedures. Informative and meaningful comparisons across spatial and temporal time scales can only be made with reliable soil C measurements and estimates, which begin on the ground and in soil testing facilities. To gauge soil C measurement inter-variability, we conducted a blind external service laboratory comparison across eight laboratories selected based on status and involvement in SOC quantification for C markets. To better understand how soil processing procedures and quantification methods commonly used in soil testing laboratories affect soil C concentration measurements, we designed an internal experiment assessing the individual effect of several alternative procedures (i.e., sieving, fine grinding, and drying) and quantification methods on total (TC), inorganic (SIC), and organic (SOC) soil C concentration estimates. We analyzed 12 different agricultural soils using 11 procedures that varied either in the sieving, fine grinding, drying, or quantification step. We found that a mechanical grinder, the most commonly used method for sieving in service laboratories, did not effectively remove coarse materials (i.e., roots and rocks), thus resulted in higher variability and significantly different C concentration measurements from the other sieving procedures (i.e., 8 + 2 mm, 4 mm, and 2 mm with rolling pin). A finer grind generally resulted in a lower coefficient of variance where the finest grind to < 125 µm had the lowest coefficient of variance, followed by the < 250 µm grind, and lastly the < 2000 µm grind. Not drying soils in an oven (at 105 °C) prior to elemental analysis on average resulted in a relative difference of 3.5 % lower TC, and 5 % lower SOC due to inadequate removal of moisture. Compared to the reference method used in our study where % TC was quantified by dry combustion on an elemental analyzer, % SIC was measured using a pressure transducer, and % SOC was calculated by the difference of % TC and % SIC, predictions of all three soil properties (% TC, % SIC, % SOC) using Fourier Transformed Infrared Spectroscopy were in high agreement (R<sup>2</sup> = 0.97, 0.99, 0.90, respectively). For % SOC, quantification by loss on ignition had a low coefficient of variance (5.42 ± 3.06 %) but the least agreement (R<sup>2</sup> = 0.83) with the reference method.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"137 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1470","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. To build confidence in the efficacy of soil carbon (C) crediting programs, precise quantification of soil organic carbon C (SOC) is critical. Detecting a true change in SOC after a management shift has occurred, specifically in agricultural lands, is difficult as it requires robust soil sampling and soil processing procedures. Informative and meaningful comparisons across spatial and temporal time scales can only be made with reliable soil C measurements and estimates, which begin on the ground and in soil testing facilities. To gauge soil C measurement inter-variability, we conducted a blind external service laboratory comparison across eight laboratories selected based on status and involvement in SOC quantification for C markets. To better understand how soil processing procedures and quantification methods commonly used in soil testing laboratories affect soil C concentration measurements, we designed an internal experiment assessing the individual effect of several alternative procedures (i.e., sieving, fine grinding, and drying) and quantification methods on total (TC), inorganic (SIC), and organic (SOC) soil C concentration estimates. We analyzed 12 different agricultural soils using 11 procedures that varied either in the sieving, fine grinding, drying, or quantification step. We found that a mechanical grinder, the most commonly used method for sieving in service laboratories, did not effectively remove coarse materials (i.e., roots and rocks), thus resulted in higher variability and significantly different C concentration measurements from the other sieving procedures (i.e., 8 + 2 mm, 4 mm, and 2 mm with rolling pin). A finer grind generally resulted in a lower coefficient of variance where the finest grind to < 125 µm had the lowest coefficient of variance, followed by the < 250 µm grind, and lastly the < 2000 µm grind. Not drying soils in an oven (at 105 °C) prior to elemental analysis on average resulted in a relative difference of 3.5 % lower TC, and 5 % lower SOC due to inadequate removal of moisture. Compared to the reference method used in our study where % TC was quantified by dry combustion on an elemental analyzer, % SIC was measured using a pressure transducer, and % SOC was calculated by the difference of % TC and % SIC, predictions of all three soil properties (% TC, % SIC, % SOC) using Fourier Transformed Infrared Spectroscopy were in high agreement (R2 = 0.97, 0.99, 0.90, respectively). For % SOC, quantification by loss on ignition had a low coefficient of variance (5.42 ± 3.06 %) but the least agreement (R2 = 0.83) with the reference method.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).