Quantifying spatial uncertainty to improve soil predictions in data-sparse regions

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE Soil Pub Date : 2025-03-17 DOI:10.5194/egusphere-2025-166
Kerstin Rau, Katharina Eggensperger, Frank Schneider, Michael Blaschek, Philipp Hennig, Thomas Scholten
{"title":"Quantifying spatial uncertainty to improve soil predictions in data-sparse regions","authors":"Kerstin Rau, Katharina Eggensperger, Frank Schneider, Michael Blaschek, Philipp Hennig, Thomas Scholten","doi":"10.5194/egusphere-2025-166","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Artificial Neural Networks (ANNs) are valuable tools for predicting soil properties using large datasets. However, a common challenge in soil sciences is the uneven distribution of soil samples, which often results from past sampling projects that heavily sample certain areas while leaving similar yet geographically distant regions under-sampled. One potential solution to this problem is to transfer an already trained model to other similar regions. Robust spatial uncertainty quantification is crucial for this purpose, yet often overlooked in current research. We address this issue by using a Bayesian deep learning technique, Laplace Approximations, to quantify spatial uncertainty. This produces a probability measure encoding where the model’s prediction is deemed reliable, and where a lack of data should lead to a high uncertainty. We train such an ANN on a soil landscape dataset from a specific region in southern Germany and then transfer the trained model to another unseen but to some extend similar region, without any further model training. The model effectively generalized alluvial patterns, demonstrating its ability to recognize repetitive features of river systems. However, the model showed a tendency to favor overrepresented soil units, underscoring the importance of balancing training datasets to reduce overconfidence in dominant classes. Quantifying uncertainty in this way allows stakeholders to better identify regions and settings in need of further data collection, enhancing decision-making and prioritizing efforts in data collection. Our approach is computationally lightweight and can be added post-hoc to existing deep learning solutions for soil prediction, thus offering a practical tool to improve soil property predictions in under-sampled areas, as well as optimizing future sampling strategies, ensuring resources are allocated efficiently for maximum data coverage and accuracy.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"18 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-166","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Artificial Neural Networks (ANNs) are valuable tools for predicting soil properties using large datasets. However, a common challenge in soil sciences is the uneven distribution of soil samples, which often results from past sampling projects that heavily sample certain areas while leaving similar yet geographically distant regions under-sampled. One potential solution to this problem is to transfer an already trained model to other similar regions. Robust spatial uncertainty quantification is crucial for this purpose, yet often overlooked in current research. We address this issue by using a Bayesian deep learning technique, Laplace Approximations, to quantify spatial uncertainty. This produces a probability measure encoding where the model’s prediction is deemed reliable, and where a lack of data should lead to a high uncertainty. We train such an ANN on a soil landscape dataset from a specific region in southern Germany and then transfer the trained model to another unseen but to some extend similar region, without any further model training. The model effectively generalized alluvial patterns, demonstrating its ability to recognize repetitive features of river systems. However, the model showed a tendency to favor overrepresented soil units, underscoring the importance of balancing training datasets to reduce overconfidence in dominant classes. Quantifying uncertainty in this way allows stakeholders to better identify regions and settings in need of further data collection, enhancing decision-making and prioritizing efforts in data collection. Our approach is computationally lightweight and can be added post-hoc to existing deep learning solutions for soil prediction, thus offering a practical tool to improve soil property predictions in under-sampled areas, as well as optimizing future sampling strategies, ensuring resources are allocated efficiently for maximum data coverage and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
期刊最新文献
Effect of trachyte and basalt powder on the growth and yield of maize (Zea Mays L.) in the Sudano-Sahelian zone of Cameroon (Central Africa) Organic matter-mediated leaching of alkalinity in limed acid soils is affected by dissolved organic carbon adsorption and soil structure Contribution of soil Microbial Necromass Carbon to Soil Organic Carbon fractions and its influencing factors in different grassland types Quantifying spatial uncertainty to improve soil predictions in data-sparse regions Impacts of soil storage on microbial parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1