{"title":"Accuracy assessment between computer-guided surgery planning and actual tooth position during tooth autotransplantation.","authors":"Jiaming Zhang, Yue Han, Haoyan Zhong","doi":"10.1111/edt.12971","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>This study aims to evaluate the precision and efficacy of utilizing computer-aided design (CAD) in combination with three-dimensional printing technology for tooth transplantation.</p><p><strong>Material and methods: </strong>This study analysed 50 transplanted teeth from 48 patients who underwent tooth transplantation surgery with the aid of CAD and positional guides. A consistent coordinate system was established using preoperative and postoperative cone-beam computed tomography images. Linear displacements and angular deviations were calculated by identifying key regions in both virtual designs and actual transplanted teeth. Additionally, an analysis was conducted to explore potential factors influencing these deviations.</p><p><strong>Results: </strong>The mean cervical deviation, apical deviation, and angular deviation among the 50 transplanted teeth were 1.16 ± 0.57 mm, 1.80 ± 0.94 mm, and 6.82 ± 3.14°, respectively. Cervical deviation was significantly smaller than apical deviation. No significant difference in deviation was observed among different recipient socket locations, holding true for both single-root, and multi-root teeth. However, a significant difference was noted in apical deviation between single-root and multi-root teeth. Our analysis identified a correlation between apical deviation and root length, leading to the development of a prediction model: Apical deviation = 0.1390 × (root length) + 0.2791.</p><p><strong>Conclusions: </strong>The postoperative position of the donor teeth shows discrepancies compared to preoperative simulation when utilizing CAD and 3D printed templates during autotransplantation procedures. Continual refinement of preoperative design is a crucial endeavour.</p>","PeriodicalId":55180,"journal":{"name":"Dental Traumatology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Traumatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/edt.12971","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: This study aims to evaluate the precision and efficacy of utilizing computer-aided design (CAD) in combination with three-dimensional printing technology for tooth transplantation.
Material and methods: This study analysed 50 transplanted teeth from 48 patients who underwent tooth transplantation surgery with the aid of CAD and positional guides. A consistent coordinate system was established using preoperative and postoperative cone-beam computed tomography images. Linear displacements and angular deviations were calculated by identifying key regions in both virtual designs and actual transplanted teeth. Additionally, an analysis was conducted to explore potential factors influencing these deviations.
Results: The mean cervical deviation, apical deviation, and angular deviation among the 50 transplanted teeth were 1.16 ± 0.57 mm, 1.80 ± 0.94 mm, and 6.82 ± 3.14°, respectively. Cervical deviation was significantly smaller than apical deviation. No significant difference in deviation was observed among different recipient socket locations, holding true for both single-root, and multi-root teeth. However, a significant difference was noted in apical deviation between single-root and multi-root teeth. Our analysis identified a correlation between apical deviation and root length, leading to the development of a prediction model: Apical deviation = 0.1390 × (root length) + 0.2791.
Conclusions: The postoperative position of the donor teeth shows discrepancies compared to preoperative simulation when utilizing CAD and 3D printed templates during autotransplantation procedures. Continual refinement of preoperative design is a crucial endeavour.
期刊介绍:
Dental Traumatology is an international journal that aims to convey scientific and clinical progress in all areas related to adult and pediatric dental traumatology. This includes the following topics:
- Epidemiology, Social Aspects, Education, Diagnostics
- Esthetics / Prosthetics/ Restorative
- Evidence Based Traumatology & Study Design
- Oral & Maxillofacial Surgery/Transplant/Implant
- Pediatrics and Orthodontics
- Prevention and Sports Dentistry
- Endodontics and Periodontal Aspects
The journal"s aim is to promote communication among clinicians, educators, researchers, and others interested in the field of dental traumatology.