Density measurements of homogeneous phase fluid mixtures comprising CO2/methanol and CO2/ethanol binary systems and correlation with equations of state
{"title":"Density measurements of homogeneous phase fluid mixtures comprising CO2/methanol and CO2/ethanol binary systems and correlation with equations of state","authors":"Hiroaki Matsukawa , Masamune Yomori , Tomoya Tsuji , Katsuto Otake","doi":"10.1016/j.fluid.2024.114140","DOIUrl":null,"url":null,"abstract":"<div><p>Equations of state (EoS) are powerful tools for estimating a wide variety of physical properties. However, the applicability of parameter sets derived from specific physical properties for the correlation and estimation of various other physical properties has received limited attention. Additionally, the estimation of physical properties using EoS is anticipated to be affected by the association of molecules. The densities of homogeneous phase fluid mixtures comprising carbon dioxide (CO<sub>2</sub>)/methanol (MeOH) and CO<sub>2</sub>/ethanol (EtOH) binary systems were measured in the current study using a high-pressure vibration-type density meter equipped with a circulation pump and a variable-volume viewing cell. Homogeneity was ensured by observing the fluid through the viewing window of the variable volume cell. The measurements were carried out at a temperature range of 313–353 K, the CO<sub>2</sub> mole-fraction range of 0–80 mol%, and at pressures up to 20 MPa. Subsequently, the as-obtained experimental data were correlated with two EoSs, <em>viz.</em> Sanchez-Lacombe (SL) EoS and Perturbed Chain statistical associating fluid theory (PC-SAFT) EoS. The density correlations between SL and PC-SAFT EoS were almost identical in accuracy. Additionally, the association between CO<sub>2</sub> and alcohols in PC-SAFT EoS had no discernible effect on the reliability of the density correlations. The vapor liquid equilibria (VLE) of the CO<sub>2</sub>/MeOH and CO<sub>2</sub>/EtOH mixtures were further estimated using parameter sets determined from the density measurements. Both the EoSs demonstrated comparable estimation accuracy; however, the pressure was estimated primarily near the critical region of the mixture, which yielded a lower estimation accuracy. Additionally, the densities of the binary systems were determined using characteristic parameters derived from the VLE correlations. Of the EoSs, the PC-SAFT EoS yielded a good correlation of the VLE, including the region near the mixture's critical region, while taking the association between CO<sub>2</sub> and alcohols into consideration. Although few of the correlations were observed to be inferior, the density of the homogeneous fluid mixture was accurately estimated using the two EoSs, with the parameters obtained from the VLE correlations. The findings of the study thus suggest that in order to estimate the density and VLE using EoS-shared parameters, the parameter sets must first be determined using a VLE that exhibits a wide range of conditions affected by the system's associations.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"584 ","pages":"Article 114140"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001171","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Equations of state (EoS) are powerful tools for estimating a wide variety of physical properties. However, the applicability of parameter sets derived from specific physical properties for the correlation and estimation of various other physical properties has received limited attention. Additionally, the estimation of physical properties using EoS is anticipated to be affected by the association of molecules. The densities of homogeneous phase fluid mixtures comprising carbon dioxide (CO2)/methanol (MeOH) and CO2/ethanol (EtOH) binary systems were measured in the current study using a high-pressure vibration-type density meter equipped with a circulation pump and a variable-volume viewing cell. Homogeneity was ensured by observing the fluid through the viewing window of the variable volume cell. The measurements were carried out at a temperature range of 313–353 K, the CO2 mole-fraction range of 0–80 mol%, and at pressures up to 20 MPa. Subsequently, the as-obtained experimental data were correlated with two EoSs, viz. Sanchez-Lacombe (SL) EoS and Perturbed Chain statistical associating fluid theory (PC-SAFT) EoS. The density correlations between SL and PC-SAFT EoS were almost identical in accuracy. Additionally, the association between CO2 and alcohols in PC-SAFT EoS had no discernible effect on the reliability of the density correlations. The vapor liquid equilibria (VLE) of the CO2/MeOH and CO2/EtOH mixtures were further estimated using parameter sets determined from the density measurements. Both the EoSs demonstrated comparable estimation accuracy; however, the pressure was estimated primarily near the critical region of the mixture, which yielded a lower estimation accuracy. Additionally, the densities of the binary systems were determined using characteristic parameters derived from the VLE correlations. Of the EoSs, the PC-SAFT EoS yielded a good correlation of the VLE, including the region near the mixture's critical region, while taking the association between CO2 and alcohols into consideration. Although few of the correlations were observed to be inferior, the density of the homogeneous fluid mixture was accurately estimated using the two EoSs, with the parameters obtained from the VLE correlations. The findings of the study thus suggest that in order to estimate the density and VLE using EoS-shared parameters, the parameter sets must first be determined using a VLE that exhibits a wide range of conditions affected by the system's associations.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.