首页 > 最新文献

Fluid Phase Equilibria最新文献

英文 中文
Prediction of melting and solid phase transitions temperatures and enthalpies for triacylglycerols using artificial neural networks 利用人工神经网络预测三酰甘油的熔化和固相转变温度和热焓
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-12 DOI: 10.1016/j.fluid.2024.114283
Ana M.S. Magalhães , Vitor A.C. Souza , Bruno M. Brentan , Antonio J.A. Meirelles , Guilherme J. Maximo
Triacylglycerols (TAG) are the main components of vegetable oils and any attempt to simulate vegetable oils processes will demand knowledge of their properties. However, experimental values are scarce, considering that several TAG in their pure forms are unavailable or too expensive for experimental measurements. On the other hand, correlating physical properties with TAG molecular structure is not simple. TAG is a molecule composed of 3 fatty acids (FA) esterified to a glycerol (GL) backbone, making properties dependent on carbon number (CN) of each FA, number of unsaturations (UN) of each FA, and position of the FA in the GL backbone. Few models are available in literature for prediction of TAG melting properties, with a special attention to melting temperature (Tfus) and enthalpy (ΔHfus) and solid-solid transition properties of the TAG polymorphic forms. Wesdorp's, Moorthy's et al. and Zeberg-Mikkelsen and Stenby's works present models based on the Group-Contribution theory nowadays used, despite some flaws, particularly considering the polymorphic transitions. Therefore, this work was aimed at evaluating Artificial Neural Network (ANN) models for prediction of TAG's Tfus and ΔHfus (β-form) as well as temperature and enthalpy transitions of molecule polymorphic forms (α and β’). Database was composed of temperature and enthalpy experimental data from literature. For each TAG, 7 input data were provided: total CN, as well as CN and UN at sn-1, 2 and 3 TAG position. The Multilayer Perceptron Feed Forward (MPL) model was used, and the topology was evaluated for number of hidden layers (HL), number of neurons (NN) and activation function at each hidden layer, and convergence algorithm. Number of HL and NN was screened by using a Central Composite Rotatable Design (CCRD). Models were further evaluated by Explainable Artificial Intelligence (XAI) and feature evaluation strategies. Architectures showed a significant higher accuracy for calculation and prediction of TAG's melting properties of the 3 polymorphic forms, with R2 higher to 0.91 for all databases when compared to literatures’ models (excepted for the prediction of the melting temperature of the β form, where Wesdorp's model presented a better predictive ability, despite great similarity). Good results were probably related to the well-defined physicochemical relationship between input (molecular structure descriptors) and output (melting properties), that could be described by XAI evaluation. This is an important advantage considering the improvement of the performance of process and products design including TAG molecules.
三酰甘油(TAG)是植物油的主要成分,任何模拟植物油过程的尝试都需要了解其特性。然而,由于一些纯 TAG 无法获得或过于昂贵,无法进行实验测量,因此实验值非常稀少。另一方面,将物理性质与 TAG 分子结构联系起来并不简单。TAG 是由 3 个脂肪酸(FA)酯化到甘油(GL)骨架上组成的分子,其特性取决于每个 FA 的碳数(CN)、每个 FA 的不饱和数(UN)以及 FA 在 GL 骨架中的位置。文献中用于预测 TAG 熔化特性的模型很少,其中特别关注 TAG 多形态的熔化温度(Tfus)和熔化焓(ΔHfus)以及固-固转变特性。Wesdorp 的著作、Moorthy 等人的著作以及 Zeberg-Mikkelsen 和 Stenby 的著作提出了基于目前使用的基团贡献理论的模型,尽管这些模型存在一些缺陷,特别是在考虑多晶型转变时。因此,这项工作旨在评估人工神经网络(ANN)模型,以预测 TAG 的 Tfus 和 ΔHfus(β-form),以及分子多晶型(α 和 β')的温度和焓变。数据库由文献中的温度和焓实验数据组成。为每种 TAG 提供了 7 个输入数据:总的 CN 以及 TAG Sn-1、2 和 3 位置上的 CN 和 UN。采用多层感知器前馈(MPL)模型,并对拓扑结构的隐层数(HL)、神经元数(NN)和每个隐层的激活函数以及收敛算法进行了评估。采用中央复合可旋转设计(CCRD)筛选 HL 和 NN 的数量。通过可解释人工智能(XAI)和特征评估策略对模型进行了进一步评估。在计算和预测 TAG 的 3 种多态形式的熔化特性时,体系结构显示出明显更高的准确性,与文献模型相比,所有数据库的 R2 均高于 0.91(β 形式的熔化温度预测除外,尽管非常相似,但 Wesdorp 的模型显示出更好的预测能力)。良好的结果可能与输入(分子结构描述符)和输出(熔化特性)之间明确的物理化学关系有关,这种关系可以通过 XAI 评估来描述。考虑到改进包括 TAG 分子在内的工艺和产品设计的性能,这是一个重要的优势。
{"title":"Prediction of melting and solid phase transitions temperatures and enthalpies for triacylglycerols using artificial neural networks","authors":"Ana M.S. Magalhães ,&nbsp;Vitor A.C. Souza ,&nbsp;Bruno M. Brentan ,&nbsp;Antonio J.A. Meirelles ,&nbsp;Guilherme J. Maximo","doi":"10.1016/j.fluid.2024.114283","DOIUrl":"10.1016/j.fluid.2024.114283","url":null,"abstract":"<div><div>Triacylglycerols (TAG) are the main components of vegetable oils and any attempt to simulate vegetable oils processes will demand knowledge of their properties. However, experimental values are scarce, considering that several TAG in their pure forms are unavailable or too expensive for experimental measurements. On the other hand, correlating physical properties with TAG molecular structure is not simple. TAG is a molecule composed of 3 fatty acids (FA) esterified to a glycerol (GL) backbone, making properties dependent on carbon number (CN) of each FA, number of unsaturations (UN) of each FA, and position of the FA in the GL backbone. Few models are available in literature for prediction of TAG melting properties, with a special attention to melting temperature (<em>T</em><sub>fus</sub>) and enthalpy (Δ<em>H</em><sub>fus</sub>) and solid-solid transition properties of the TAG polymorphic forms. Wesdorp's, Moorthy's et al. and Zeberg-Mikkelsen and Stenby's works present models based on the Group-Contribution theory nowadays used, despite some flaws, particularly considering the polymorphic transitions. Therefore, this work was aimed at evaluating Artificial Neural Network (ANN) models for prediction of TAG's <em>T</em><sub>fus</sub> and Δ<em>H</em><sub>fus</sub> (β-form) as well as temperature and enthalpy transitions of molecule polymorphic forms (α and β’). Database was composed of temperature and enthalpy experimental data from literature. For each TAG, 7 input data were provided: total CN, as well as CN and UN at sn-1, 2 and 3 TAG position. The Multilayer Perceptron Feed Forward (MPL) model was used, and the topology was evaluated for number of hidden layers (HL), number of neurons (NN) and activation function at each hidden layer, and convergence algorithm. Number of HL and NN was screened by using a Central Composite Rotatable Design (CCRD). Models were further evaluated by Explainable Artificial Intelligence (XAI) and feature evaluation strategies. Architectures showed a significant higher accuracy for calculation and prediction of TAG's melting properties of the 3 polymorphic forms, with R<sup>2</sup> higher to 0.91 for all databases when compared to literatures’ models (excepted for the prediction of the melting temperature of the β form, where Wesdorp's model presented a better predictive ability, despite great similarity). Good results were probably related to the well-defined physicochemical relationship between input (molecular structure descriptors) and output (melting properties), that could be described by XAI evaluation. This is an important advantage considering the improvement of the performance of process and products design including TAG molecules.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"590 ","pages":"Article 114283"},"PeriodicalIF":2.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of pure compounds’ parameters on the phase behaviour of carbon dioxide + 1-hexanol binary system 纯化合物参数对二氧化碳+1-己醇二元体系相行为的影响
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.fluid.2024.114281
Adrian V. Crişciu, Sergiu Sima, Catinca Secuianu
New vapour–liquid–liquid and vapour–liquid equilibrium data to complement the existing ones are measured at six temperatures (308.15 K to 383.15 K) and at pressures up to 182.9 K using an analytic-static method with phases sampling via special valves (“AnTVisVarCap”, as defined by Prof. Ralf Dohrn and co-workers) for the carbon dioxide (1) + 1-hexanol (2) binary system. Four out of the six isotherm reported here are measured for the first time. The main component of the high-pressure setup is a 60 cm3 visual cell.
The new isotherms are compared with the available literature which is also reviewed and analysed. It should be noted that among the data already published, only one other research group reported the compositions of both phases at equilibrium, as we did previously by using another experimental method. The new and literature data were modelled with Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state based on a semi-predictive procedure to reproduce as well as possible the minimum and the maximum of the critical curve(s) using one set of binary interaction parameters. The influence of critical data and acentric factors of pure components on the phase behaviour of their binary system is discussed. Although the values of the critical pressures and acentric factors of pure substances are not very different in the database we used, the models predict type III or IV phase behaviour with the same set of binary interaction parameters. This sensitivity, which was not observed for other systems we studied, could be explained by the alcohol structure and high asymmetry of the system. Therefore, we analysed in more depth the influence of the critical temperatures and pressures, as well as the acentric factors of carbon dioxide and 1-hexanol and exemplified for one temperature located above the system UCEP's temperature.
采用分析-静态方法,通过特殊阀门(由 Ralf Dohrn 教授及其合作者定义的 "AnTVisVarCap")对二氧化碳 (1) + 1- 己醇 (2) 二元体系进行相取样,在六个温度(308.15 K 至 383.15 K)和最高 182.9 K 的压力下测量了新的汽-液-液和汽-液平衡数据,以补充现有数据。这里报告的六个等温线中有四个是首次测量。高压装置的主要部件是一个 60 cm3 的可视池。新的等温线与现有文献进行了比较,并对文献进行了回顾和分析。值得注意的是,在已发表的数据中,只有一个研究小组报告了平衡状态下两相的成分,而我们之前使用的是另一种实验方法。我们使用彭-罗宾逊(PR)和苏韦-雷德里希-邝(SRK)状态方程对新数据和文献数据进行了建模,该模型基于半预测程序,目的是使用一组二元相互作用参数尽可能再现临界曲线的最小值和最大值。讨论了纯组分的临界数据和中心因子对其二元体系相行为的影响。虽然在我们使用的数据库中,纯物质的临界压力和中心因子值相差不大,但模型却能用同一组二元相互作用参数预测出 III 型或 IV 型相态。这种敏感性是我们研究的其他体系所没有的,其原因可能是该体系的醇结构和高度不对称。因此,我们更深入地分析了临界温度和压力以及二氧化碳和 1-己醇的中心因子的影响,并以高于系统 UCEP 温度的一个温度为例进行了说明。
{"title":"The influence of pure compounds’ parameters on the phase behaviour of carbon dioxide + 1-hexanol binary system","authors":"Adrian V. Crişciu,&nbsp;Sergiu Sima,&nbsp;Catinca Secuianu","doi":"10.1016/j.fluid.2024.114281","DOIUrl":"10.1016/j.fluid.2024.114281","url":null,"abstract":"<div><div>New vapour–liquid–liquid and vapour–liquid equilibrium data to complement the existing ones are measured at six temperatures (308.15 K to 383.15 K) and at pressures up to 182.9 K using an analytic-static method with phases sampling via special valves (“<em>AnTVisVarCap</em>”, as defined by Prof. Ralf Dohrn and co-workers) for the carbon dioxide (1) + 1-hexanol (2) binary system. Four out of the six isotherm reported here are measured for the first time. The main component of the high-pressure setup is a 60 cm<sup>3</sup> visual cell.</div><div>The new isotherms are compared with the available literature which is also reviewed and analysed. It should be noted that among the data already published, only one other research group reported the compositions of both phases at equilibrium, as we did previously by using another experimental method. The new and literature data were modelled with Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state based on a semi-predictive procedure to reproduce as well as possible the minimum and the maximum of the critical curve(s) using one set of binary interaction parameters. The influence of critical data and acentric factors of pure components on the phase behaviour of their binary system is discussed. Although the values of the critical pressures and acentric factors of pure substances are not very different in the database we used, the models predict type III or IV phase behaviour with the same set of binary interaction parameters. This sensitivity, which was not observed for other systems we studied, could be explained by the alcohol structure and high asymmetry of the system. Therefore, we analysed in more depth the influence of the critical temperatures and pressures, as well as the acentric factors of carbon dioxide and 1-hexanol and exemplified for one temperature located above the system UCEP's temperature.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114281"},"PeriodicalIF":2.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a new parameterization strategy and GC parameters of halogenated hydrocarbons for PC-SAFT equation of state 为 PC-SAFT 状态方程开发卤代烃的新参数化策略和 GC 参数
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1016/j.fluid.2024.114280
Shihao Wu , Zhi Yang , Zhiqiang Yang , Ying Chen , Songping Mo , Xianglong Luo , Jianyong Chen , Yingzong Liang
Statistical Associating Fluid Theory (SAFT) equations of state (EoSs) have been extensively used in the prediction of fluid phase equilibria and thermodynamic properties. For each fluid, determining the component-dependent parameters typically involves fitting experimental data with a local optimization algorithm. SAFT-type EoSs are highly nonlinear due to the high-order functions used to describe different contribution terms. This nonlinearity leads to the presence of multiple local optima, making parameter optimization very sensitive to initial values. Hence, it is crucial to determine the starting point for the optimization process, yet little attention has been paid to how initial parameter sets are selected. In this paper, a method based on group contributions to establish an appropriate initial value for the optimization process is proposed and applied to Perturbed-Chain SAFT (PC-SAFT). The optimized PC-SAFT parameters for a total of 74 substances from 11 different chemical families have been evaluated. The fitting results for saturated pressure, liquid density, and vapor density showed overall average absolute relative deviations (AARD) of 0.050 %, 0.042 %, and 0.151 %, respectively. This paper also provided group contribution parameters for halogenated hydrocarbons to estimate PC-SAFT parameters. Additionally, an assessment of global and local optimization algorithms was conducted. The results demonstrate that the global algorithm not only requires longer computation time but also exhibits significantly lower accuracy compared to the local algorithm. The overall AARD for the global algorithm is 9.493 %, whereas for the local algorithm, it stands at 0.068 %.
统计关联流体理论(SAFT)状态方程(EoSs)已被广泛用于预测流体相平衡和热力学性质。对于每种流体,确定与组分相关的参数通常需要使用局部优化算法对实验数据进行拟合。由于 SAFT 型 EoS 采用高阶函数来描述不同的贡献项,因此具有高度的非线性。这种非线性导致存在多个局部最优值,使参数优化对初始值非常敏感。因此,确定优化过程的起点至关重要,但人们很少关注如何选择初始参数集。本文提出了一种基于群体贡献的方法,以确定优化过程的适当初始值,并将其应用于 Perturbed Chain SAFT(PC-SAFT)。本文评估了 11 个不同化学族共 74 种物质的 PC-SAFT 优化参数。饱和压力、液体密度和蒸汽密度的拟合结果显示,总体平均绝对相对偏差 (AARD) 分别为 0.050 %、0.042 % 和 0.151 %。本文还提供了卤代烃的组贡献参数,以估算 PC-SAFT 参数。此外,还对全局和局部优化算法进行了评估。结果表明,与局部算法相比,全局算法不仅需要更长的计算时间,而且精度也明显较低。全局算法的总体 AARD 值为 9.493%,而局部算法的 AARD 值为 0.068%。
{"title":"Development of a new parameterization strategy and GC parameters of halogenated hydrocarbons for PC-SAFT equation of state","authors":"Shihao Wu ,&nbsp;Zhi Yang ,&nbsp;Zhiqiang Yang ,&nbsp;Ying Chen ,&nbsp;Songping Mo ,&nbsp;Xianglong Luo ,&nbsp;Jianyong Chen ,&nbsp;Yingzong Liang","doi":"10.1016/j.fluid.2024.114280","DOIUrl":"10.1016/j.fluid.2024.114280","url":null,"abstract":"<div><div>Statistical Associating Fluid Theory (SAFT) equations of state (EoSs) have been extensively used in the prediction of fluid phase equilibria and thermodynamic properties. For each fluid, determining the component-dependent parameters typically involves fitting experimental data with a local optimization algorithm. SAFT-type EoSs are highly nonlinear due to the high-order functions used to describe different contribution terms. This nonlinearity leads to the presence of multiple local optima, making parameter optimization very sensitive to initial values. Hence, it is crucial to determine the starting point for the optimization process, yet little attention has been paid to how initial parameter sets are selected. In this paper, a method based on group contributions to establish an appropriate initial value for the optimization process is proposed and applied to Perturbed-Chain SAFT (PC-SAFT). The optimized PC-SAFT parameters for a total of 74 substances from 11 different chemical families have been evaluated. The fitting results for saturated pressure, liquid density, and vapor density showed overall average absolute relative deviations (AARD) of 0.050 %, 0.042 %, and 0.151 %, respectively. This paper also provided group contribution parameters for halogenated hydrocarbons to estimate PC-SAFT parameters. Additionally, an assessment of global and local optimization algorithms was conducted. The results demonstrate that the global algorithm not only requires longer computation time but also exhibits significantly lower accuracy compared to the local algorithm. The overall AARD for the global algorithm is 9.493 %, whereas for the local algorithm, it stands at 0.068 %.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114280"},"PeriodicalIF":2.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental data and thermodynamic modeling for n-propane + Brazil nut oil at high pressures 正丙烷+巴西坚果油在高压下的实验数据和热力学模型
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1016/j.fluid.2024.114279
J.V. Mattos , F.C. Colman , C. da Silva , M.L. Alcantara , P.M. Ndiaye , C.E.C. Rodrigues , L. Cardozo-Filho
This research aimed to uncover essential phase transition data for the pseudo-binary system of n-propane and Brazil nut oil. Over a range of temperatures from 313 to 343 K and pressures up to 3.42 MPa, our study identified various phase equilibria, including liquid-vapor, liquid-liquid, and liquid-liquid-vapor, using the visual synthetic-static variable volume method. The observed phase transitions fall under the type III classification proposed by Scott van Konynenburg. Leveraging the cubic Peng-Robinson equation of state with the van der Waals mixing rule, we were able to construct isopleths for the proposed system. Additionally, we examined the fatty acid profile of Brazil nut oil to accurately quantify its composition and estimate critical properties of the pseudo component in line with Kay's rule. This research provides critical insights into the behavior of phase diagrams for pressurized fluid-based extraction and separation processes, which are crucial for achieving maximum yield and minimizing energy expenditure.
这项研究旨在揭示正丙烷和巴西坚果油伪二元体系的基本相变数据。在 313 至 343 K 的温度范围和高达 3.42 MPa 的压力范围内,我们的研究采用可视化合成-静态可变体积法确定了各种相平衡,包括液-气、液-液和液-液-气。观察到的相变属于 Scott van Konynenburg 提出的 III 型分类。利用彭-罗宾逊立方状态方程和范德瓦耳斯混合规则,我们能够为提议的系统构建等值线。此外,我们还研究了巴西坚果油的脂肪酸谱,以准确量化其成分,并根据凯氏规则估算出伪成分的关键属性。这项研究为基于加压流体的萃取和分离过程的相图行为提供了重要见解,这对于实现最高产量和最低能源消耗至关重要。
{"title":"Experimental data and thermodynamic modeling for n-propane + Brazil nut oil at high pressures","authors":"J.V. Mattos ,&nbsp;F.C. Colman ,&nbsp;C. da Silva ,&nbsp;M.L. Alcantara ,&nbsp;P.M. Ndiaye ,&nbsp;C.E.C. Rodrigues ,&nbsp;L. Cardozo-Filho","doi":"10.1016/j.fluid.2024.114279","DOIUrl":"10.1016/j.fluid.2024.114279","url":null,"abstract":"<div><div>This research aimed to uncover essential phase transition data for the pseudo-binary system of n-propane and Brazil nut oil. Over a range of temperatures from 313 to 343 K and pressures up to 3.42 MPa, our study identified various phase equilibria, including liquid-vapor, liquid-liquid, and liquid-liquid-vapor, using the visual synthetic-static variable volume method. The observed phase transitions fall under the type III classification proposed by Scott van Konynenburg. Leveraging the cubic Peng-Robinson equation of state with the van der Waals mixing rule, we were able to construct isopleths for the proposed system. Additionally, we examined the fatty acid profile of Brazil nut oil to accurately quantify its composition and estimate critical properties of the pseudo component in line with Kay's rule. This research provides critical insights into the behavior of phase diagrams for pressurized fluid-based extraction and separation processes, which are crucial for achieving maximum yield and minimizing energy expenditure.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114279"},"PeriodicalIF":2.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase equilibrium calculations with specified vapor fraction 指定蒸汽分数的相平衡计算
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1016/j.fluid.2024.114274
Estefânia Pintor Canzian , Arley Alles Cruz , Ricardo Augusto Mazza , Luís Fernando Mercier Franco
Phase equilibrium calculations have been extensively explored over the years, with numerous industrial applications, where pressure and temperature specifications are the most common. Different problems, however, may require different specifications for solving phase equilibrium. This article aims to develop a flash calculation with specified temperature or pressure and vapor fraction, termed ψ β-flash, which can be useful in studies of storage tanks and distillation columns. An algorithm is developed with an external loop for pressure or temperature optimization and an inner loop for the isobaric–isothermal-flash calculation. The method is efficient in predicting pressure for different binary and ternary mixtures, including refrigerants, hydrocarbons, and carbon dioxide, even in complex scenarios such as regions with retrograde condensation. The computational demand is investigated, revealing that calculations within the isobaric–isothermal-flash primarily contribute to the total computational cost, rather than pressure optimization. Finally, two case studies highlight the method’s efficiency: one involving a spherical storage tank, where we compute pressures based on liquid height to classify the safe operational region, and another focusing on a distillation tray, predicting temperatures driven by changes in liquid height to provide insights into separation performance.
多年来,人们对相平衡计算进行了广泛的探索,并将其应用于众多工业领域,其中压力和温度规格是最常见的。然而,不同的问题可能需要不同的相平衡求解规格。本文旨在开发一种具有指定温度或压力和蒸汽分数的闪蒸计算方法,称为 ψ β-闪蒸,可用于储罐和蒸馏塔的研究。所开发的算法具有一个用于压力或温度优化的外循环和一个用于等压等温闪蒸计算的内循环。该方法能有效预测不同二元和三元混合物(包括制冷剂、碳氢化合物和二氧化碳)的压力,即使在逆向冷凝等复杂情况下也是如此。对计算需求进行了研究,发现等压-等温-闪蒸内的计算是造成总计算成本的主要原因,而不是压力优化。最后,两个案例研究凸显了该方法的效率:一个涉及球形储罐,我们根据液体高度计算压力,以划分安全操作区域;另一个侧重于蒸馏盘,预测液体高度变化引起的温度,以深入了解分离性能。
{"title":"Phase equilibrium calculations with specified vapor fraction","authors":"Estefânia Pintor Canzian ,&nbsp;Arley Alles Cruz ,&nbsp;Ricardo Augusto Mazza ,&nbsp;Luís Fernando Mercier Franco","doi":"10.1016/j.fluid.2024.114274","DOIUrl":"10.1016/j.fluid.2024.114274","url":null,"abstract":"<div><div>Phase equilibrium calculations have been extensively explored over the years, with numerous industrial applications, where pressure and temperature specifications are the most common. Different problems, however, may require different specifications for solving phase equilibrium. This article aims to develop a flash calculation with specified temperature or pressure and vapor fraction, termed <span><math><mi>ψ</mi></math></span> <span><math><mi>β</mi></math></span>-flash, which can be useful in studies of storage tanks and distillation columns. An algorithm is developed with an external loop for pressure or temperature optimization and an inner loop for the isobaric–isothermal-flash calculation. The method is efficient in predicting pressure for different binary and ternary mixtures, including refrigerants, hydrocarbons, and carbon dioxide, even in complex scenarios such as regions with retrograde condensation. The computational demand is investigated, revealing that calculations within the isobaric–isothermal-flash primarily contribute to the total computational cost, rather than pressure optimization. Finally, two case studies highlight the method’s efficiency: one involving a spherical storage tank, where we compute pressures based on liquid height to classify the safe operational region, and another focusing on a distillation tray, predicting temperatures driven by changes in liquid height to provide insights into separation performance.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114274"},"PeriodicalIF":2.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of the significant structure theory for the viscosity modeling of ionic fluids 重要结构理论在离子液体粘度建模中的应用
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-02 DOI: 10.1016/j.fluid.2024.114278
Ricardo Macías-Salinas
The present work introduces the application of a modified significant structure theory (SST) in order to obtain improved representations of the dynamic viscosity of several representative last-generation ionic fluids: pure ionic liquids (ILs) and deep eutectic solvents (DESs). The activated-state variables present in the resulting SST-based model were related to well-known thermodynamic potentials (residual internal energy, liquid and solid molar volumes) which in turn were estimated from two simple cubic equations of state of the van der Waals type: Soave-Redlich-Kwong or Peng-Robinson. The modifications introduced to the SST approach were successfully verified during the correlation and prediction of experimental dynamic viscosities of 3 families of imidazolium-based ILs ([CXmim][BF4], [CXmim][PF6] and [CXmim][Tf2N]), one pyridinium-based IL ([b3mpy][BF4]), one pyrrolidinium-based IL ([P14][Tf2N]), one ammonium-based IL ([N1114][Tf2N]) and four ILs having nonfluorinated anions ([dmim][MeSO4], [bmim][EtSO4], [bmim][Ac] and [b3mpy][dca]) over a temperature range varying from 273.15 to 438.15 K and at pressures from 1 to 3,000 bar We also considered three archetypal choline chloride-based DESs for model validation: Reline, Ethaline and Glyceline within a temperature range varying from 293.15 to 373.15 K and at pressures from 1 to 1,000 bar
本研究介绍了如何应用改进的重要结构理论(SST)来改进几种具有代表性的最后一代离子液体(纯离子液体(ILs)和深共晶溶剂(DESs))的动态粘度。基于 SST 的模型中的活化状态变量与众所周知的热力学势能(残余内能、液体和固体摩尔体积)有关,而这些势能又是通过两个简单的范德瓦耳斯类型立方状态方程估算出来的:Soave-Redlich-Kwong 或 Peng-Robinson 模型。在对 3 种咪唑基 IL([CXmim][BF4]、[CXmim][PF6]和[CXmim][Tf2N])的实验动态粘度进行关联和预测时,成功验证了对 SST 方法所做的修改、一种吡啶鎓基 IL([b3mpy][BF4])、一种吡咯烷鎓基 IL([P14][Tf2N])、一种铵基 IL([N1114][Tf2N])和四种具有非氟阴离子的 IL([dmim][MeSO4]、[bmim][EtSO4]、[bmim][Ac]和[b3mpy][dca]),温度范围为 273.我们还考虑了三种基于氯化胆碱的 DES 原型进行模型验证:Reline、Ethaline 和 Glyceline,温度范围为 293.15 至 373.15 K,压力范围为 1 至 1,000 bar。
{"title":"Application of the significant structure theory for the viscosity modeling of ionic fluids","authors":"Ricardo Macías-Salinas","doi":"10.1016/j.fluid.2024.114278","DOIUrl":"10.1016/j.fluid.2024.114278","url":null,"abstract":"<div><div>The present work introduces the application of a modified significant structure theory (SST) in order to obtain improved representations of the dynamic viscosity of several representative last-generation ionic fluids: pure ionic liquids (ILs) and deep eutectic solvents (DESs). The activated-state variables present in the resulting SST-based model were related to well-known thermodynamic potentials (residual internal energy, liquid and solid molar volumes) which in turn were estimated from two simple cubic equations of state of the van der Waals type: Soave-Redlich-Kwong or Peng-Robinson. The modifications introduced to the SST approach were successfully verified during the correlation and prediction of experimental dynamic viscosities of 3 families of imidazolium-based ILs ([C<sub>X</sub>mim][BF<sub>4</sub>], [C<sub>X</sub>mim][PF<sub>6</sub>] and [C<sub>X</sub>mim][Tf<sub>2</sub>N]), one pyridinium-based IL ([b3mpy][BF<sub>4</sub>]), one pyrrolidinium-based IL ([P14][Tf<sub>2</sub>N]), one ammonium-based IL ([N1114][Tf<sub>2</sub>N]) and four ILs having nonfluorinated anions ([dmim][MeSO<sub>4</sub>], [bmim][EtSO<sub>4</sub>], [bmim][Ac] and [b3mpy][dca]) over a temperature range varying from 273.15 to 438.15 K and at pressures from 1 to 3,000 bar We also considered three archetypal choline chloride-based DESs for model validation: Reline, Ethaline and Glyceline within a temperature range varying from 293.15 to 373.15 K and at pressures from 1 to 1,000 bar</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114278"},"PeriodicalIF":2.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal conductivity measurements for n-hexane and n-heptane at elevated temperature and pressure 正己烷和正庚烷在高温高压下的导热性测量结果
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-30 DOI: 10.1016/j.fluid.2024.114273
Yuxuan Chen , Wanlin Xu , Mengyi Wang , Xiong Zheng
Thermal conductivity is a very important thermal property parameter in the process of hydrocarbons transportation, storage, combustion and cooling. Therefore, accurate thermal conductivity is important in the utilization of hydrocarbons. In this work, the thermal conductivity of n-hexane and n-heptane in the temperature range of 298.15 K∼523.15 K and pressure range of 0.1 MPa∼15.0 MPa was studied by using transient hot-wire method. In order to facilitate engineering application, function polynomials of temperature and pressure are fitted and correlated with experimental data. The average absolute error of the experimental data and fitting data of n-hexane and n-heptane are 0.72 and 0.61 %, respectively, which proves that the function polynomial can describe the experimental data well. In addition, we compare the collected literature data with our results and find that the literature data is very close to our results. This work is expected to expand the range of available data on the thermal conductivity of n-hexane and n-heptane and contribute to the industrial applications of these two substances.
在碳氢化合物的运输、储存、燃烧和冷却过程中,导热系数是一个非常重要的热特性参数。因此,准确的导热系数对碳氢化合物的利用非常重要。本研究采用瞬态热线法研究了正己烷和正庚烷在 298.15 K∼523.15 K 温度范围和 0.1 MPa∼15.0 MPa 压力范围内的导热系数。为了便于工程应用,温度和压力的函数多项式被拟合并与实验数据相关联。正己烷和正庚烷的实验数据与拟合数据的平均绝对误差分别为 0.72 % 和 0.61 %,证明函数多项式能很好地描述实验数据。此外,我们还将收集到的文献数据与我们的结果进行了比较,发现文献数据与我们的结果非常接近。这项工作有望扩大正己烷和正庚烷导热系数的可用数据范围,并为这两种物质的工业应用做出贡献。
{"title":"Thermal conductivity measurements for n-hexane and n-heptane at elevated temperature and pressure","authors":"Yuxuan Chen ,&nbsp;Wanlin Xu ,&nbsp;Mengyi Wang ,&nbsp;Xiong Zheng","doi":"10.1016/j.fluid.2024.114273","DOIUrl":"10.1016/j.fluid.2024.114273","url":null,"abstract":"<div><div>Thermal conductivity is a very important thermal property parameter in the process of hydrocarbons transportation, storage, combustion and cooling. Therefore, accurate thermal conductivity is important in the utilization of hydrocarbons. In this work, the thermal conductivity of n-hexane and n-heptane in the temperature range of 298.15 K∼523.15 K and pressure range of 0.1 MPa∼15.0 MPa was studied by using transient hot-wire method. In order to facilitate engineering application, function polynomials of temperature and pressure are fitted and correlated with experimental data. The average absolute error of the experimental data and fitting data of n-hexane and n-heptane are 0.72 and 0.61 %, respectively, which proves that the function polynomial can describe the experimental data well. In addition, we compare the collected literature data with our results and find that the literature data is very close to our results. This work is expected to expand the range of available data on the thermal conductivity of n-hexane and n-heptane and contribute to the industrial applications of these two substances.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114273"},"PeriodicalIF":2.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting gas-cap and tar-mat formation conditions in hydrocarbon reservoirs. Application of Continuous Thermodynamics 预测碳氢化合物储层中的气帽和焦油毡形成条件。连续热力学的应用
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1016/j.fluid.2024.114276
Ana Cristina Ramirez-Gallardo, I. Garcia-Cruz, C. Lira-Galeana
A method to predict the gas/oil (GOC) and oil/tar (OTC) fluid contacts of reservoir fluid columns containing heavy fractions and asphaltenes is presented. A new formulation and solution to the gravitational equilibrium equations in terms of the method of moments, and the use of an equation of state for semicontinuous mixtures are shown to provide a robust and consistent method to describe the variation of pressure, reservoir fluid composition and heavy-ends molecular weights with depth, as well as the location of the fluid contacts of a petroleum reservoir. Use of the new method is first illustrated by locating the GOC of a (continuous) ideal reservoir described by Raoult´s law, and by predicting the GOC and OTC of two reservoir systems where measured data are available. The good agreement of the new method with measured gradients shows the adequacy of the proposed approach.
介绍了一种预测含有重馏分和沥青质的储层流体柱的气/油(GOC)和油/焦油(OTC)流体接触的方法。通过对矩量法重力平衡方程的新表述和求解,以及对半连续混合物状态方程的使用,可以提供一种稳健、一致的方法来描述压力、储层流体成分和重馏分分子量随深度的变化,以及石油储层流体接触点的位置。新方法的使用首先通过确定一个由拉乌尔定律描述的(连续)理想储层的 GOC 位置,然后通过预测两个有测量数据的储层系统的 GOC 和 OTC 来说明。新方法与测量梯度的良好一致性表明了所建议方法的适当性。
{"title":"Predicting gas-cap and tar-mat formation conditions in hydrocarbon reservoirs. Application of Continuous Thermodynamics","authors":"Ana Cristina Ramirez-Gallardo,&nbsp;I. Garcia-Cruz,&nbsp;C. Lira-Galeana","doi":"10.1016/j.fluid.2024.114276","DOIUrl":"10.1016/j.fluid.2024.114276","url":null,"abstract":"<div><div>A method to predict the gas/oil (GOC) and oil/tar (OTC) fluid contacts of reservoir fluid columns containing heavy fractions and asphaltenes is presented. A new formulation and solution to the gravitational equilibrium equations in terms of the method of moments, and the use of an equation of state for semicontinuous mixtures are shown to provide a robust and consistent method to describe the variation of pressure, reservoir fluid composition and heavy-ends molecular weights with depth, as well as the location of the fluid contacts of a petroleum reservoir. Use of the new method is first illustrated by locating the GOC of a (continuous) ideal reservoir described by Raoult´s law, and by predicting the GOC and OTC of two reservoir systems where measured data are available. The good agreement of the new method with measured gradients shows the adequacy of the proposed approach.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114276"},"PeriodicalIF":2.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase equilibrium calculations at low and high pressures with a modified COSMO-SAC model 利用改进的 COSMO-SAC 模型进行低压和高压下的相平衡计算
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1016/j.fluid.2024.114277
Nikolaos Prinos, Epaminondas Voutsas
This work presents the development of a modified variant of the COSMO-SAC model, aiming to achieve reliable phase equilibrium predictions at both low and high pressures. Two major modifications of the previously published COSMO-SAC models are introduced. First, an improved combinatorial term is used to improve the results in nearly athermal and asymmetric mixtures. Second, a further separation of the hydrogen-bonding sigma profile has been introduced, differentiating the hydroxyl group belonging to water from hydroxyl groups belonging to other compounds, to improve the results in aqueous systems. The model's performance is studied for vapor-liquid equilibrium at low pressures and infinite dilution activity coefficient predictions, and it is benchmarked with respect to COSMO-SAC and COSMO-SAC 2010 models. Furthermore, the model is combined with the Peng Robinson equation of state via the Universal Mixing Rules (UMR) and applied for high pressure vapor-liquid equilibrium predictions. The results indicate that the modified COSMO-SAC model represents a reliable tool for phase-equilibria predictions for systems of various degrees of non-ideality and asymmetry.
这项工作介绍了 COSMO-SAC 模型的改进型,旨在实现低压和高压下可靠的相平衡预测。对之前发表的 COSMO-SAC 模型进行了两大修改。首先,使用了改进的组合项,以改善近热和不对称混合物的结果。其次,引入了氢键西格玛曲线的进一步分离,将属于水的羟基与属于其他化合物的羟基区分开来,以改进水体系中的结果。研究了该模型在低压汽液平衡和无限稀释活性系数预测方面的性能,并以 COSMO-SAC 和 COSMO-SAC 2010 模型为基准进行了比较。此外,该模型还通过通用混合规则(UMR)与彭-罗宾逊状态方程相结合,并应用于高压汽液平衡预测。结果表明,修改后的 COSMO-SAC 模型是预测各种非理想度和非对称性系统相平衡的可靠工具。
{"title":"Phase equilibrium calculations at low and high pressures with a modified COSMO-SAC model","authors":"Nikolaos Prinos,&nbsp;Epaminondas Voutsas","doi":"10.1016/j.fluid.2024.114277","DOIUrl":"10.1016/j.fluid.2024.114277","url":null,"abstract":"<div><div>This work presents the development of a modified variant of the COSMO-SAC model, aiming to achieve reliable phase equilibrium predictions at both low and high pressures. Two major modifications of the previously published COSMO-SAC models are introduced. First, an improved combinatorial term is used to improve the results in nearly athermal and asymmetric mixtures. Second, a further separation of the hydrogen-bonding sigma profile has been introduced, differentiating the hydroxyl group belonging to water from hydroxyl groups belonging to other compounds, to improve the results in aqueous systems. The model's performance is studied for vapor-liquid equilibrium at low pressures and infinite dilution activity coefficient predictions, and it is benchmarked with respect to COSMO-SAC and COSMO-SAC 2010 models. Furthermore, the model is combined with the Peng Robinson equation of state via the Universal Mixing Rules (UMR) and applied for high pressure vapor-liquid equilibrium predictions. The results indicate that the modified COSMO-SAC model represents a reliable tool for phase-equilibria predictions for systems of various degrees of non-ideality and asymmetry.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114277"},"PeriodicalIF":2.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the physicochemical and thermodynamic characteristics of imidazole ionic liquids with water and ethanol mixtures 咪唑离子液体与水和乙醇混合物的物理化学和热力学特性研究
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.fluid.2024.114275
Binqi Wang , Hongshuai Gao , Yuxing Wu , Huizheng Wu , Tiancheng Li , Xue Liu , Yi Nie
The utilization of ionic liquids (ILs) as solvents in the preparation of regenerated cellulose fibers (RCFs) has garnered considerable research attention. The physicochemical properties of the ILs mixtures with coagulants significantly impact the morphology and characteristics of RCFs. This study determines the density and viscosity of 1-ethyl-3- methylimidazolium diethylphosphate ([Emim][DEP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim][DMP]), and 1‑butyl‑3-methylimidazolium dimethylphosphate ([Bmim][DMP]) in mixtures with water and ethanol. The thermodynamic data such as excess molar volumes, viscosity deviation, and excess Gibbs energy of activation for viscous flow, were also calculated and analyzed. The density and viscosity of [Bmim][DMP] is 1.1579 g·cm−3 and 367.97 mPa·s at 303 K, and the order of the interaction between different ILs and coagulants was obtained. In the meantime, the water activity of the ILs-water mixtures was also tested, and the constant pressure boiling point of ILs with water and ethanol mixtures was measured. Furthermore, the polar action parameters of ILs were determined by Reichardt's dye. The experimental results obtained have mutually confirmed each other. The investigation of the interaction between ILs and coagulants furnishes foundational data and theoretical support for the controlled formation of RCFs prepared using ILs as solvents.
利用离子液体(ILs)作为溶剂制备再生纤维素纤维(RCFs)的研究备受关注。离子液体与凝固剂混合物的理化性质对再生纤维素纤维的形态和特性有重大影响。本研究测定了 1-乙基-3-甲基咪唑二乙基磷酸盐([Emim][DEP])、1-乙基-3-甲基咪唑二甲基磷酸盐([Emim][DMP])和 1-丁基-3-甲基咪唑二甲基磷酸盐([Bmim][DMP])与水和乙醇的混合物的密度和粘度。此外,还计算和分析了过量摩尔体积、粘度偏差和粘流活化过量吉布斯能等热力学数据。在 303 K 时,[Bmim][DMP] 的密度和粘度分别为 1.1579 g-cm-3 和 367.97 mPa-s,并得出了不同 IL 与凝固剂之间相互作用的顺序。同时,还测试了 ILs 与水混合物的水活性,并测量了 ILs 与水和乙醇混合物的恒压沸点。此外,还利用赖哈特染料测定了 ILs 的极性作用参数。实验结果相互印证。ILs 与混凝剂之间相互作用的研究为以 ILs 为溶剂制备 RCFs 的可控形成提供了基础数据和理论支持。
{"title":"Investigation of the physicochemical and thermodynamic characteristics of imidazole ionic liquids with water and ethanol mixtures","authors":"Binqi Wang ,&nbsp;Hongshuai Gao ,&nbsp;Yuxing Wu ,&nbsp;Huizheng Wu ,&nbsp;Tiancheng Li ,&nbsp;Xue Liu ,&nbsp;Yi Nie","doi":"10.1016/j.fluid.2024.114275","DOIUrl":"10.1016/j.fluid.2024.114275","url":null,"abstract":"<div><div>The utilization of ionic liquids (ILs) as solvents in the preparation of regenerated cellulose fibers (RCFs) has garnered considerable research attention. The physicochemical properties of the ILs mixtures with coagulants significantly impact the morphology and characteristics of RCFs. This study determines the density and viscosity of 1-ethyl-3- methylimidazolium diethylphosphate ([Emim][DEP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim][DMP]), and 1‑butyl‑3-methylimidazolium dimethylphosphate ([Bmim][DMP]) in mixtures with water and ethanol. The thermodynamic data such as excess molar volumes, viscosity deviation, and excess Gibbs energy of activation for viscous flow, were also calculated and analyzed. The density and viscosity of [Bmim][DMP] is 1.1579 g·cm<sup>−3</sup> and 367.97 mPa·s at 303 K, and the order of the interaction between different ILs and coagulants was obtained. In the meantime, the water activity of the ILs-water mixtures was also tested, and the constant pressure boiling point of ILs with water and ethanol mixtures was measured. Furthermore, the polar action parameters of ILs were determined by Reichardt's dye. The experimental results obtained have mutually confirmed each other. The investigation of the interaction between ILs and coagulants furnishes foundational data and theoretical support for the controlled formation of RCFs prepared using ILs as solvents.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114275"},"PeriodicalIF":2.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fluid Phase Equilibria
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1