{"title":"An exact algorithm for two-dimensional cutting problems based on multi-level pattern","authors":"Weiping Pan","doi":"10.1016/j.gmod.2024.101220","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-level pattern is proposed for the unconstrained two-dimensional cutting problems of rectangular items, and an exact generation algorithm is constructed. The arrangement of rectangular items with the same type in multiple rows and columns is referred to as a 0-level pattern. An <em>n</em>-level pattern is the horizontal or vertical combination of an <em>n</em>-1 level pattern with a pattern whose level will not exceed <em>n</em>-1. The generation algorithm of multi-level pattern is constructed on the base of dynamic programming, and the multi-level patterns with various sizes are generated with increased level order. The normal size is chosen to reduce unnecessary computation in the algorithm. Three sets of benchmark instances and one set of random production instance from the literatures are used for comparison. Comparing to the exact algorithm in the literature, the results in this paper are equivalent, but the computation time is shorter. Comparing to heuristic algorithms in literatures, the results in this paper are better and the computation time is still good enough for practical applications.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101220"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000080/pdfft?md5=7ba46c24bfd0defb95fae7879ef5f757&pid=1-s2.0-S1524070324000080-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000080","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-level pattern is proposed for the unconstrained two-dimensional cutting problems of rectangular items, and an exact generation algorithm is constructed. The arrangement of rectangular items with the same type in multiple rows and columns is referred to as a 0-level pattern. An n-level pattern is the horizontal or vertical combination of an n-1 level pattern with a pattern whose level will not exceed n-1. The generation algorithm of multi-level pattern is constructed on the base of dynamic programming, and the multi-level patterns with various sizes are generated with increased level order. The normal size is chosen to reduce unnecessary computation in the algorithm. Three sets of benchmark instances and one set of random production instance from the literatures are used for comparison. Comparing to the exact algorithm in the literature, the results in this paper are equivalent, but the computation time is shorter. Comparing to heuristic algorithms in literatures, the results in this paper are better and the computation time is still good enough for practical applications.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.