Ailo Aasen , Vegard G. Jervell , Morten Hammer , Bjørn A. Strøm , Hans L. Skarsvåg , Øivind Wilhelmsen
{"title":"Bulk and interfacial thermodynamics of ammonia, water and their mixtures","authors":"Ailo Aasen , Vegard G. Jervell , Morten Hammer , Bjørn A. Strøm , Hans L. Skarsvåg , Øivind Wilhelmsen","doi":"10.1016/j.fluid.2024.114125","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia is a promising energy carrier for the green transition, but its hygroscopicity and toxicity necessitate in-depth understanding of its interaction with water. This work examines the bulk and interfacial thermodynamics of the ammonia–water system. Parameters for three equations of state are fitted to experimental data and compared to parameters from literature: PC-SAFT, Cubic Plus Association and Peng–Robinson. Peng–Robinson stands out as most accurate for bulk thermodynamics. Introducing a temperature-dependent volume shift for water with Peng–Robinson yields a highly accurate model without introducing problematic inconsistencies, with errors of 0.05% for saturation pressures, and 0.5% for liquid densities. For the mixture, Peng–Robinson with a two-parameter Huron–Vidal mixing rule reproduces measurements mostly within their uncertainties, whereas the standard mixing rules for PC-SAFT and CPA are less accurate. A literature review of surface tension measurements of ammonia–water mixtures reveals that accurate measurements exist only at ambient temperature. We apply density gradient theory and density functional theory based on PC-SAFT, finding that both models fail at reproducing qualitative features of the surface tensions and adsorptions of dilute solutions of aqueous ammonia. Whereas bulk properties are well characterized, understanding and describing the interfacial thermodynamics of the ammonia–water system demands more work both on the experimental and modeling side.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"584 ","pages":"Article 114125"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838122400102X/pdfft?md5=91fc913f81683fa79c0d0d562eef7e52&pid=1-s2.0-S037838122400102X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122400102X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia is a promising energy carrier for the green transition, but its hygroscopicity and toxicity necessitate in-depth understanding of its interaction with water. This work examines the bulk and interfacial thermodynamics of the ammonia–water system. Parameters for three equations of state are fitted to experimental data and compared to parameters from literature: PC-SAFT, Cubic Plus Association and Peng–Robinson. Peng–Robinson stands out as most accurate for bulk thermodynamics. Introducing a temperature-dependent volume shift for water with Peng–Robinson yields a highly accurate model without introducing problematic inconsistencies, with errors of 0.05% for saturation pressures, and 0.5% for liquid densities. For the mixture, Peng–Robinson with a two-parameter Huron–Vidal mixing rule reproduces measurements mostly within their uncertainties, whereas the standard mixing rules for PC-SAFT and CPA are less accurate. A literature review of surface tension measurements of ammonia–water mixtures reveals that accurate measurements exist only at ambient temperature. We apply density gradient theory and density functional theory based on PC-SAFT, finding that both models fail at reproducing qualitative features of the surface tensions and adsorptions of dilute solutions of aqueous ammonia. Whereas bulk properties are well characterized, understanding and describing the interfacial thermodynamics of the ammonia–water system demands more work both on the experimental and modeling side.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.