Madison Lore , Julia Gabriele Harten , Geoff Boeing
{"title":"A hybrid deep learning method for identifying topics in large-scale urban text data: Benefits and trade-offs","authors":"Madison Lore , Julia Gabriele Harten , Geoff Boeing","doi":"10.1016/j.compenvurbsys.2024.102131","DOIUrl":null,"url":null,"abstract":"<div><p>Large-scale text data from public sources, including social media or online platforms, can expand urban planners' ability to monitor and analyze urban conditions in near real-time. To overcome scalability challenges of manual techniques for qualitative data analysis, researchers and practitioners have turned to computer-automated methods, such as natural language processing (NLP) and deep learning. However, the benefits, challenges, and trade-offs of these methods remain poorly understood. How much meaning can different NLP techniques capture and how do their results compare to traditional manual techniques? Drawing on 90,000 online rental listings in Los Angeles County, this study proposes and compares manual, semi-automated, and fully automated methods for identifying context-informed topics in unstructured, user-generated text data. We find that fully automated methods perform best with more-structured text, but struggle to separate topics in free-flow text and when handling nuanced language. Introducing a manual technique first on a small data set to train a semi-automated method, however, improves accuracy even as the structure of the text degrades. We argue that while fully automated NLP methods are attractive replacements for scaling manual techniques, leveraging the contextual understanding of human expertise alongside efficient computer-based methods like BERT models generates better accuracy without sacrificing scalability.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"111 ","pages":"Article 102131"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0198971524000607/pdfft?md5=9c8f877cb67840528ee457f6a117bb9b&pid=1-s2.0-S0198971524000607-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000607","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale text data from public sources, including social media or online platforms, can expand urban planners' ability to monitor and analyze urban conditions in near real-time. To overcome scalability challenges of manual techniques for qualitative data analysis, researchers and practitioners have turned to computer-automated methods, such as natural language processing (NLP) and deep learning. However, the benefits, challenges, and trade-offs of these methods remain poorly understood. How much meaning can different NLP techniques capture and how do their results compare to traditional manual techniques? Drawing on 90,000 online rental listings in Los Angeles County, this study proposes and compares manual, semi-automated, and fully automated methods for identifying context-informed topics in unstructured, user-generated text data. We find that fully automated methods perform best with more-structured text, but struggle to separate topics in free-flow text and when handling nuanced language. Introducing a manual technique first on a small data set to train a semi-automated method, however, improves accuracy even as the structure of the text degrades. We argue that while fully automated NLP methods are attractive replacements for scaling manual techniques, leveraging the contextual understanding of human expertise alongside efficient computer-based methods like BERT models generates better accuracy without sacrificing scalability.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.