Yuyang Li , Runlong Cai , Rujing Yin , Xiaoxiao Li , Yi Yuan , Zhaojin An , Junchen Guo , Dominik Stolzenburg , Markku Kulmala , Jingkun Jiang
{"title":"A kinetic partitioning method for simulating the condensation mass flux of organic vapors in a wide volatility range","authors":"Yuyang Li , Runlong Cai , Rujing Yin , Xiaoxiao Li , Yi Yuan , Zhaojin An , Junchen Guo , Dominik Stolzenburg , Markku Kulmala , Jingkun Jiang","doi":"10.1016/j.jaerosci.2024.106400","DOIUrl":null,"url":null,"abstract":"<div><p>Organic aerosols are ubiquitous, playing important roles in various atmospheric physicochemical processes such as the formation of cloud droplets and haze. Condensation of organic vapors, as a net effect of association with particles and dissociation from the condensed phase, is a fundamental process that drives the formation of organic aerosols. Kinetic models are often used to simulate the condensation fluxes of low-volatility organic vapors and aerosol growth. However, the widely used kinetic growth models usually calculate the evaporation of a certain species based on previous particulate compositions, without including the co-condensation of other species. Here we present a new kinetic partitioning method for calculating the condensation fluxes of organic vapors in a wide volatility range with low computational cost. In this method, the organic vapors are assumed to be in a quasi-steady state, but never reach real association-dissociation equilibrium during the simultaneous condensation of multiple species. We show a good consistency between the kinetic partitioning method and kinetic models in simulating particle mass fractions and condensation fluxes. Under relevant atmospheric conditions, we reveal that the kinetic partitioning method also reproduce the trend that low-volatility species are almost non-volatile while volatile organic compounds almost reach association-dissociation equilibrium, while there is a transition regime between them. This transition regime varies with atmospheric conditions, such as temperature and vapor concentrations. Compared with previous studies combining kinetic growth methods with equilibrium partitioning theories to simplify the condensation flux calculation, this method helps to improve accuracy without a significant expense of computation cost, and it can be applied in a wider range of atmospheric conditions such as in extremely cold atmospheres and polluted exhaust plumes.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224000673","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic aerosols are ubiquitous, playing important roles in various atmospheric physicochemical processes such as the formation of cloud droplets and haze. Condensation of organic vapors, as a net effect of association with particles and dissociation from the condensed phase, is a fundamental process that drives the formation of organic aerosols. Kinetic models are often used to simulate the condensation fluxes of low-volatility organic vapors and aerosol growth. However, the widely used kinetic growth models usually calculate the evaporation of a certain species based on previous particulate compositions, without including the co-condensation of other species. Here we present a new kinetic partitioning method for calculating the condensation fluxes of organic vapors in a wide volatility range with low computational cost. In this method, the organic vapors are assumed to be in a quasi-steady state, but never reach real association-dissociation equilibrium during the simultaneous condensation of multiple species. We show a good consistency between the kinetic partitioning method and kinetic models in simulating particle mass fractions and condensation fluxes. Under relevant atmospheric conditions, we reveal that the kinetic partitioning method also reproduce the trend that low-volatility species are almost non-volatile while volatile organic compounds almost reach association-dissociation equilibrium, while there is a transition regime between them. This transition regime varies with atmospheric conditions, such as temperature and vapor concentrations. Compared with previous studies combining kinetic growth methods with equilibrium partitioning theories to simplify the condensation flux calculation, this method helps to improve accuracy without a significant expense of computation cost, and it can be applied in a wider range of atmospheric conditions such as in extremely cold atmospheres and polluted exhaust plumes.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.