Kai Yang, Shengbo Hu, Xin Zhang, Tingting Yan, Manqin Zhu
{"title":"CSL-SFNet for Cooperative Spectrum Sensing in Cognitive Satellite Network with GEO and LEO Satellites","authors":"Kai Yang, Shengbo Hu, Xin Zhang, Tingting Yan, Manqin Zhu","doi":"10.1049/2024/5897908","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In a cognitive satellite network (CSN) with GEO and LEO satellites, there is a large propagation losses between the sensing satellite and the ground station. The results of spectrum sensing from a single satellite may be inaccurate, which will create serious interference in the primary satellite system. Cooperative spectrum sensing (CSS) has become the key technology for solving the above problems in recent years. However, most of the current CSS techniques are model-driven. They are difficult to model and implement in CSNs since their detection performance is strongly dependent on an assumed statistical model. Thus, we propose a novel CSS scheme, which uses convolutional neural networks (CNNs), self-attention (SA) modules, long short-term memory networks (LSTMs), and soft fusion networks, called CSL-SFNet. This scheme combines the advantages of CNNs, SA modules, and LSTMs to extract the features of the input signals from the spatial and temporal domains. Additionally, the CSL-SFNet makes use of a novel soft fusion technique that improves detection performance while also considerably reducing communication overhead. The simulation results demonstrate that the proposed algorithm can achieve a detection probability of 90% when the signal-to-noise ratio is −20 dB; it has a shorter running time and always outperforms the other CSS algorithms.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5897908","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5897908","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In a cognitive satellite network (CSN) with GEO and LEO satellites, there is a large propagation losses between the sensing satellite and the ground station. The results of spectrum sensing from a single satellite may be inaccurate, which will create serious interference in the primary satellite system. Cooperative spectrum sensing (CSS) has become the key technology for solving the above problems in recent years. However, most of the current CSS techniques are model-driven. They are difficult to model and implement in CSNs since their detection performance is strongly dependent on an assumed statistical model. Thus, we propose a novel CSS scheme, which uses convolutional neural networks (CNNs), self-attention (SA) modules, long short-term memory networks (LSTMs), and soft fusion networks, called CSL-SFNet. This scheme combines the advantages of CNNs, SA modules, and LSTMs to extract the features of the input signals from the spatial and temporal domains. Additionally, the CSL-SFNet makes use of a novel soft fusion technique that improves detection performance while also considerably reducing communication overhead. The simulation results demonstrate that the proposed algorithm can achieve a detection probability of 90% when the signal-to-noise ratio is −20 dB; it has a shorter running time and always outperforms the other CSS algorithms.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf