Machine Unlearning: Solutions and Challenges

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-04-04 DOI:10.1109/TETCI.2024.3379240
Jie Xu;Zihan Wu;Cong Wang;Xiaohua Jia
{"title":"Machine Unlearning: Solutions and Challenges","authors":"Jie Xu;Zihan Wu;Cong Wang;Xiaohua Jia","doi":"10.1109/TETCI.2024.3379240","DOIUrl":null,"url":null,"abstract":"Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 3","pages":"2150-2168"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10488864/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习:解决方案与挑战
机器学习模型可能会无意中记住敏感、未经授权或恶意的数据,从而带来隐私泄露、安全漏洞和性能下降的风险。为了解决这些问题,机器解除学习已成为一种关键技术,可选择性地消除特定训练数据点对训练模型的影响。本文对机器非学习的解决方案进行了全面的分类和分析。我们将现有解决方案分为彻底消除数据影响的精确解除学习方法和有效减少数据影响的近似解除学习方法。通过全面回顾解决方案,我们确定并讨论了它们的优势和局限性。此外,我们还提出了推进机器解除学习的未来方向,并将其确立为值得信赖的自适应机器学习模型的基本能力。本文为研究人员提供了一个开放问题路线图,鼓励他们为解决选择性数据移除的实际需求做出有影响力的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents Guest Editorial Special Issue on Resource Sustainable Computational and Artificial Intelligence IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors IEEE Computational Intelligence Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1