首页 > 最新文献

IEEE Transactions on Emerging Topics in Computational Intelligence最新文献

英文 中文
IEEE Computational Intelligence Society Information 电气和电子工程师学会计算智能学会信息
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-23 DOI: 10.1109/TETCI.2024.3427473
{"title":"IEEE Computational Intelligence Society Information","authors":"","doi":"10.1109/TETCI.2024.3427473","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3427473","url":null,"abstract":"","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10607836","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information 电气和电子工程师学会《计算智能新课题论文集》出版信息
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-23 DOI: 10.1109/TETCI.2024.3427471
{"title":"IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information","authors":"","doi":"10.1109/TETCI.2024.3427471","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3427471","url":null,"abstract":"","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10607837","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors 电气和电子工程师学会《计算智能新课题论文集》(IEEE Transactions on Emerging Topics in Computational Intelligence) 给作者的信息
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-23 DOI: 10.1109/TETCI.2024.3427475
{"title":"IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors","authors":"","doi":"10.1109/TETCI.2024.3427475","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3427475","url":null,"abstract":"","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10607838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Multi-Source Information Fusion Method Based on Dependency Interval 基于依赖区间的新型多源信息融合方法
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-25 DOI: 10.1109/TETCI.2024.3370032
Weihua Xu;Yufei Lin;Na Wang
With the rapid development of Big Data era, it is necessary to extract necessary information from a large amount of information. Single-source information systems are often affected by extreme values and outliers, so multi-source information systems are more common and data more reasonable, information fusion is a common method to deal with multi-source information system. Compared with single-valued data, interval-valued data can describe the uncertainty and random change of data more effectively. This article proposes a novel interval-valued multi-source information fusion method: A multi-source information fusion method based on dependency interval. This method needs to construct a dependency function, which takes into account the interval length and the number of data points in the interval, so as to make the obtained data more centralized and eliminate the influence of outliers and extreme values. Due to the unfixed boundary of the dependency interval, a median point within the interval is selected as a bridge to simplify the acquisition of the dependency interval. Furthermore, a multi-source information system fusion algorithm based on dependency intervals was proposed, and experiments were conducted on 9 UCI datasets to compare the classification accuracy and quality of the proposed algorithm with traditional information fusion methods. The experimental results show that this method is more effective than the maximum interval method, quartile interval method, and mean interval method, and the validity of the data has been proven through hypothesis testing.
随着大数据时代的快速发展,有必要从海量信息中提取必要的信息。单源信息系统往往会受到极端值和离群值的影响,因此多源信息系统更加常见,数据更加合理,信息融合是处理多源信息系统的常用方法。与单值数据相比,区间值数据能更有效地描述数据的不确定性和随机变化。本文提出了一种新颖的区间值多源信息融合方法:一种基于依赖区间的多源信息融合方法。该方法需要构建一个隶属函数,该函数考虑了区间长度和区间内数据点的数量,从而使得到的数据更加集中,消除了异常值和极端值的影响。由于隶属区间的边界不固定,因此选择区间内的中值点作为桥梁,以简化隶属区间的获取。此外,还提出了一种基于依赖区间的多源信息系统融合算法,并在 9 个 UCI 数据集上进行了实验,比较了所提算法与传统信息融合方法的分类精度和质量。实验结果表明,该方法比最大值区间法、四分位区间法和平均值区间法更有效,并通过假设检验证明了数据的有效性。
{"title":"A Novel Multi-Source Information Fusion Method Based on Dependency Interval","authors":"Weihua Xu;Yufei Lin;Na Wang","doi":"10.1109/TETCI.2024.3370032","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3370032","url":null,"abstract":"With the rapid development of Big Data era, it is necessary to extract necessary information from a large amount of information. Single-source information systems are often affected by extreme values and outliers, so multi-source information systems are more common and data more reasonable, information fusion is a common method to deal with multi-source information system. Compared with single-valued data, interval-valued data can describe the uncertainty and random change of data more effectively. This article proposes a novel interval-valued multi-source information fusion method: A multi-source information fusion method based on dependency interval. This method needs to construct a dependency function, which takes into account the interval length and the number of data points in the interval, so as to make the obtained data more centralized and eliminate the influence of outliers and extreme values. Due to the unfixed boundary of the dependency interval, a median point within the interval is selected as a bridge to simplify the acquisition of the dependency interval. Furthermore, a multi-source information system fusion algorithm based on dependency intervals was proposed, and experiments were conducted on 9 UCI datasets to compare the classification accuracy and quality of the proposed algorithm with traditional information fusion methods. The experimental results show that this method is more effective than the maximum interval method, quartile interval method, and mean interval method, and the validity of the data has been proven through hypothesis testing.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Contrast Medical Image Segmentation via Transformer and Boundary Perception 通过变换器和边界感知进行低对比医学图像分割
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-04-19 DOI: 10.1109/TETCI.2024.3353624
Yinglin Zhang;Ruiling Xi;Wei Wang;Heng Li;Lingxi Hu;Huiyan Lin;Dave Towey;Ruibin Bai;Huazhu Fu;Risa Higashita;Jiang Liu
Low-contrast medical image segmentation is a challenging task that requires full use of local details and global context. However, existing convolutional neural networks (CNNs) cannot fully exploit global information due to limited receptive fields and local weight sharing. On the other hand, the transformer effectively establishes long-range dependencies but lacks desirable properties for modeling local details. This paper proposes a Transformer-embedded Boundary perception Network (TBNet) that combines the advantages of transformer and convolution for low-contrast medical image segmentation. Firstly, the transformer-embedded module uses convolution at the low-level layer to model local details and uses the Enhanced TRansformer (ETR) to capture long-range dependencies at the high-level layer. This module can extract robust features with semantic contexts to infer the possible target location and basic structure in low-contrast conditions. Secondly, we utilize the decoupled body-edge branch to promote general feature learning and precept precise boundary locations. The ETR establishes long-range dependencies across the whole feature map range and is enhanced by introducing local information. We implement it in a parallel mode, i.e., the group of self-attention with multi-head captures the global relationship, and the group of convolution retains local details. We compare TBNet with other state-of-the-art (SOTA) methods on the cornea endothelial cell, ciliary body, and kidney segmentation tasks. The TBNet improves segmentation performance, proving its effectiveness and robustness.
低对比度医学图像分割是一项具有挑战性的任务,需要充分利用局部细节和全局背景。然而,现有的卷积神经网络(CNN)由于感受野和局部权重共享有限,无法充分利用全局信息。另一方面,变换器能有效地建立长程依赖关系,但缺乏对局部细节建模的理想特性。本文提出的变换器嵌入边界感知网络(TBNet)结合了变换器和卷积的优势,可用于低对比度医学图像分割。首先,变换器嵌入模块在低层使用卷积来模拟局部细节,在高层使用增强变换器(ETR)来捕捉长距离依赖关系。该模块可以提取具有语义背景的稳健特征,从而在低对比度条件下推断出可能的目标位置和基本结构。其次,我们利用解耦体边缘分支来促进一般特征学习,并预设精确的边界位置。ETR 在整个特征图范围内建立了长程依赖关系,并通过引入局部信息得到增强。我们以并行模式实现它,即多头自注意组捕捉全局关系,卷积组保留局部细节。在角膜内皮细胞、睫状体和肾脏的分割任务中,我们将 TBNet 与其他最先进的(SOTA)方法进行了比较。TBNet 提高了分割性能,证明了它的有效性和鲁棒性。
{"title":"Low-Contrast Medical Image Segmentation via Transformer and Boundary Perception","authors":"Yinglin Zhang;Ruiling Xi;Wei Wang;Heng Li;Lingxi Hu;Huiyan Lin;Dave Towey;Ruibin Bai;Huazhu Fu;Risa Higashita;Jiang Liu","doi":"10.1109/TETCI.2024.3353624","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3353624","url":null,"abstract":"Low-contrast medical image segmentation is a challenging task that requires full use of local details and global context. However, existing convolutional neural networks (CNNs) cannot fully exploit global information due to limited receptive fields and local weight sharing. On the other hand, the transformer effectively establishes long-range dependencies but lacks desirable properties for modeling local details. This paper proposes a Transformer-embedded Boundary perception Network (TBNet) that combines the advantages of transformer and convolution for low-contrast medical image segmentation. Firstly, the transformer-embedded module uses convolution at the low-level layer to model local details and uses the Enhanced TRansformer (ETR) to capture long-range dependencies at the high-level layer. This module can extract robust features with semantic contexts to infer the possible target location and basic structure in low-contrast conditions. Secondly, we utilize the decoupled body-edge branch to promote general feature learning and precept precise boundary locations. The ETR establishes long-range dependencies across the whole feature map range and is enhanced by introducing local information. We implement it in a parallel mode, i.e., the group of self-attention with multi-head captures the global relationship, and the group of convolution retains local details. We compare TBNet with other state-of-the-art (SOTA) methods on the cornea endothelial cell, ciliary body, and kidney segmentation tasks. The TBNet improves segmentation performance, proving its effectiveness and robustness.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compensation Atmospheric Scattering Model and Two-Branch Network for Single Image Dehazing 用于单幅图像去噪的补偿大气散射模型和双分支网络
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-18 DOI: 10.1109/TETCI.2024.3386838
Xudong Wang;Xi'ai Chen;Weihong Ren;Zhi Han;Huijie Fan;Yandong Tang;Lianqing Liu
Most existing dehazing networks rely on synthetic hazy-clear image pairs for training, and thus fail to work well in real-world scenes. In this paper, we deduce a reformulated atmospheric scattering model for a hazy image and propose a novel lightweight two-branch dehazing network. In the model, we use a Transformation Map to represent the dehazing transformation and use a Compensation Map to represent variable illumination compensation. Based on this model, we design a Two-Branch Network (TBN) to jointly estimate the Transformation Map and Compensation Map. Our TBN is designed with a shared Feature Extraction Module and two Adaptive Weight Modules. The Feature Extraction Module is used to extract shared features from hazy images. The two Adaptive Weight Modules generate two groups of adaptive weighted features for the Transformation Map and Compensation Map, respectively. This design allows for a targeted conversion of features to the Transformation Map and Compensation Map. To further improve the dehazing performance in the real-world, we propose a semi-supervised learning strategy for TBN. Specifically, by performing supervised pre-training based on synthetic image pairs, we propose a Self-Enhancement method to generate pseudo-labels, and then further train our TBN with the pseudo-labels in a semi-supervised way. Extensive experiments demonstrate that the model-based TBN outperforms the state-of-the-art methods on various real-world datasets.
现有的去噪网络大多依赖于合成的灰度-清晰度图像对进行训练,因此在真实世界场景中效果不佳。在本文中,我们为雾霾图像推导了一个重新制定的大气散射模型,并提出了一种新型轻量级双分支去雾霾网络。在该模型中,我们使用 "变换图"(Transformation Map)表示去雾变换,使用 "补偿图"(Compensation Map)表示可变光照补偿。基于这个模型,我们设计了一个双分支网络(TBN)来联合估计变换图和补偿图。我们的 TBN 设计有一个共享的特征提取模块和两个自适应权重模块。特征提取模块用于从雾霾图像中提取共享特征。两个自适应加权模块分别为变换图和补偿图生成两组自适应加权特征。这种设计可以有针对性地将特征转换到变换贴图和补偿贴图。为了进一步提高实际应用中的去毛刺性能,我们为 TBN 提出了一种半监督学习策略。具体来说,通过基于合成图像对进行有监督的预训练,我们提出了一种自我增强方法来生成伪标签,然后利用伪标签以半监督的方式进一步训练我们的 TBN。大量实验证明,基于模型的 TBN 在各种实际数据集上的表现优于最先进的方法。
{"title":"Compensation Atmospheric Scattering Model and Two-Branch Network for Single Image Dehazing","authors":"Xudong Wang;Xi'ai Chen;Weihong Ren;Zhi Han;Huijie Fan;Yandong Tang;Lianqing Liu","doi":"10.1109/TETCI.2024.3386838","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3386838","url":null,"abstract":"Most existing dehazing networks rely on synthetic hazy-clear image pairs for training, and thus fail to work well in real-world scenes. In this paper, we deduce a reformulated atmospheric scattering model for a hazy image and propose a novel lightweight two-branch dehazing network. In the model, we use a Transformation Map to represent the dehazing transformation and use a Compensation Map to represent variable illumination compensation. Based on this model, we design a \u0000<underline>T</u>\u0000wo-\u0000<underline>B</u>\u0000ranch \u0000<underline>N</u>\u0000etwork (TBN) to jointly estimate the Transformation Map and Compensation Map. Our TBN is designed with a shared Feature Extraction Module and two Adaptive Weight Modules. The Feature Extraction Module is used to extract shared features from hazy images. The two Adaptive Weight Modules generate two groups of adaptive weighted features for the Transformation Map and Compensation Map, respectively. This design allows for a targeted conversion of features to the Transformation Map and Compensation Map. To further improve the dehazing performance in the real-world, we propose a semi-supervised learning strategy for TBN. Specifically, by performing supervised pre-training based on synthetic image pairs, we propose a Self-Enhancement method to generate pseudo-labels, and then further train our TBN with the pseudo-labels in a semi-supervised way. Extensive experiments demonstrate that the model-based TBN outperforms the state-of-the-art methods on various real-world datasets.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Unlearning: Solutions and Challenges 机器学习:解决方案与挑战
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-04-04 DOI: 10.1109/TETCI.2024.3379240
Jie Xu;Zihan Wu;Cong Wang;Xiaohua Jia
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.
机器学习模型可能会无意中记住敏感、未经授权或恶意的数据,从而带来隐私泄露、安全漏洞和性能下降的风险。为了解决这些问题,机器解除学习已成为一种关键技术,可选择性地消除特定训练数据点对训练模型的影响。本文对机器非学习的解决方案进行了全面的分类和分析。我们将现有解决方案分为彻底消除数据影响的精确解除学习方法和有效减少数据影响的近似解除学习方法。通过全面回顾解决方案,我们确定并讨论了它们的优势和局限性。此外,我们还提出了推进机器解除学习的未来方向,并将其确立为值得信赖的自适应机器学习模型的基本能力。本文为研究人员提供了一个开放问题路线图,鼓励他们为解决选择性数据移除的实际需求做出有影响力的贡献。
{"title":"Machine Unlearning: Solutions and Challenges","authors":"Jie Xu;Zihan Wu;Cong Wang;Xiaohua Jia","doi":"10.1109/TETCI.2024.3379240","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3379240","url":null,"abstract":"Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unifying Global-Local Representations in Salient Object Detection With Transformers 利用变换器统一突出物体检测中的全局-局部表征
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-02 DOI: 10.1109/TETCI.2024.3380442
Sucheng Ren;Nanxuan Zhao;Qiang Wen;Guoqiang Han;Shengfeng He
The fully convolutional network (FCN) has dominated salient object detection for a long period. However, the locality of CNN requires the model deep enough to have a global receptive field and such a deep model always leads to the loss of local details. In this paper, we introduce a new attention-based encoder, vision transformer, into salient object detection to ensure the globalization of the representations from shallow to deep layers. With the global view in very shallow layers, the transformer encoder preserves more local representations to recover the spatial details in final saliency maps. Besides, as each layer can capture a global view of its previous layer, adjacent layers can implicitly maximize the representation differences and minimize the redundant features, making every output feature of transformer layers contribute uniquely to the final prediction. To decode features from the transformer, we propose a simple yet effective deeply-transformed decoder. The decoder densely decodes and upsamples the transformer features, generating the final saliency map with less noise injection. Experimental results demonstrate that our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks by a large margin, with an average of 12.17% improvement in terms of Mean Absolute Error (MAE).
长期以来,全卷积网络(FCN)一直主导着突出物体检测。然而,全卷积网络的局部性要求模型足够深,以拥有全局感受野,而这样的深层模型总是会导致局部细节的丢失。在本文中,我们在突出物体检测中引入了一种新的基于注意力的编码器--视觉转换器,以确保表征从浅层到深层的全局化。在极浅层的全局视图中,变换器编码器保留了更多的局部表征,以恢复最终显著性图中的空间细节。此外,由于每一层都能捕捉到上一层的全局视图,相邻层可以隐含地最大化表征差异,最小化冗余特征,从而使变换器层的每个输出特性都能为最终预测做出独特贡献。为了对变换层的特征进行解码,我们提出了一种简单而有效的深度变换解码器。解码器对变换器特征进行密集解码和高采样,在生成最终突出图时减少噪声注入。实验结果表明,在五个基准测试中,我们的方法明显优于其他基于 FCN 和变压器的方法,平均绝对误差(MAE)提高了 12.17%。
{"title":"Unifying Global-Local Representations in Salient Object Detection With Transformers","authors":"Sucheng Ren;Nanxuan Zhao;Qiang Wen;Guoqiang Han;Shengfeng He","doi":"10.1109/TETCI.2024.3380442","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3380442","url":null,"abstract":"The fully convolutional network (FCN) has dominated salient object detection for a long period. However, the locality of CNN requires the model deep enough to have a global receptive field and such a deep model always leads to the loss of local details. In this paper, we introduce a new attention-based encoder, vision transformer, into salient object detection to ensure the globalization of the representations from shallow to deep layers. With the global view in very shallow layers, the transformer encoder preserves more local representations to recover the spatial details in final saliency maps. Besides, as each layer can capture a global view of its previous layer, adjacent layers can implicitly maximize the representation differences and minimize the redundant features, making every output feature of transformer layers contribute uniquely to the final prediction. To decode features from the transformer, we propose a simple yet effective deeply-transformed decoder. The decoder densely decodes and upsamples the transformer features, generating the final saliency map with less noise injection. Experimental results demonstrate that our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks by a large margin, with an average of 12.17% improvement in terms of Mean Absolute Error (MAE).","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review 深度学习在 B 型超声波分割中的应用进展:全面回顾
IF 5.3 3区 计算机科学 Q1 Mathematics Pub Date : 2024-04-02 DOI: 10.1109/TETCI.2024.3377676
Mohammed Yusuf Ansari;Iffa Afsa Changaai Mangalote;Pramod Kumar Meher;Omar Aboumarzouk;Abdulla Al-Ansari;Osama Halabi;Sarada Prasad Dakua
Ultrasound (US) is generally preferred because it is of low-cost, safe, and non-invasive. US image segmentation is crucial in image analysis. Recently, deep learning-based methods are increasingly being used to segment US images. This survey systematically summarizes and highlights crucial aspects of the deep learning techniques developed in the last five years for US segmentation of various body regions. We investigate and analyze the most popular loss functions and metrics for training and evaluating the neural network for US segmentation. Furthermore, we study the patterns in neural network architectures proposed for the segmentation of various regions of interest. We present neural network modules and priors that address the anatomical challenges associated with different body organs in US images. We have found that variants of U-Net that have dedicated modules to overcome the low-contrast and blurry nature of images are suitable for US image segmentation. Finally, we also discuss the advantages and challenges associated with deep learning methods in the context of US image segmentation.
超声波(US)因其成本低、安全、无创伤而受到普遍青睐。US 图像分割在图像分析中至关重要。最近,基于深度学习的方法越来越多地被用于 US 图像分割。本调查系统地总结并强调了过去五年中开发的深度学习技术的关键方面,这些技术用于对不同身体区域的 US 图像进行分割。我们研究并分析了最流行的损失函数和指标,用于训练和评估用于 US 分割的神经网络。此外,我们还研究了为分割各种感兴趣区域而提出的神经网络架构的模式。我们提出了神经网络模块和先验,以应对 US 图像中与不同人体器官相关的解剖学挑战。我们发现,具有专用模块以克服图像低对比度和模糊特性的 U-Net 变体适用于 US 图像分割。最后,我们还讨论了深度学习方法在 US 图像分割方面的优势和挑战。
{"title":"Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review","authors":"Mohammed Yusuf Ansari;Iffa Afsa Changaai Mangalote;Pramod Kumar Meher;Omar Aboumarzouk;Abdulla Al-Ansari;Osama Halabi;Sarada Prasad Dakua","doi":"10.1109/TETCI.2024.3377676","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3377676","url":null,"abstract":"Ultrasound (US) is generally preferred because it is of low-cost, safe, and non-invasive. US image segmentation is crucial in image analysis. Recently, deep learning-based methods are increasingly being used to segment US images. This survey systematically summarizes and highlights crucial aspects of the deep learning techniques developed in the last five years for US segmentation of various body regions. We investigate and analyze the most popular loss functions and metrics for training and evaluating the neural network for US segmentation. Furthermore, we study the patterns in neural network architectures proposed for the segmentation of various regions of interest. We present neural network modules and priors that address the anatomical challenges associated with different body organs in US images. We have found that variants of U-Net that have dedicated modules to overcome the low-contrast and blurry nature of images are suitable for US image segmentation. Finally, we also discuss the advantages and challenges associated with deep learning methods in the context of US image segmentation.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141095529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Mental Activities and Age on Brain Network: An Analysis From Complex Network Perspective 智力活动和年龄对大脑网络的影响:复杂网络视角下的分析
IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-02 DOI: 10.1109/TETCI.2024.3374957
Cemre Candemir;Vahid Khalilpour Akram;Ali Saffet Gonul
The functional connections in the human brain offer many opportunities to explore changing dynamic patterns of the brain under different circumstances. Different factors such as age, mental activity, and health status may affect functional connectivity, connected regions, and the robustness of connections in the brain. In this study, we evaluate the functional connectivity of the whole brain changing with age from a complex network perspective during different processes in healthy adults. We conducted a functional Magnetic Resonance Imaging (fMRI) study that includes both resting and cognitive states with elderly and young participants (n = 38). To analyze the functional connectivity structure in view of graph theory, we used the minimum dominating sets (MDS) and then minimum hitting sets (MHS) of the connectivity networks. Based on our analysis, age, and mental activity show a significant effect on the hitting sets and dominating sets of the brain regions. The results also indicate that the working mechanism of the brain changes from local to diffused under the circumstances of a particular computational load with age. In this manner, the proposed method can be used as a complementary method for clinical procedures to evaluate and measure the effect of aging on the human brain.
人脑中的功能连接为探索大脑在不同情况下的动态变化模式提供了很多机会。年龄、心理活动和健康状况等不同因素可能会影响大脑的功能连接、连接区域和连接的稳健性。在本研究中,我们从复杂网络的角度评估了健康成年人在不同过程中全脑功能连接性随年龄的变化。我们进行了一项功能磁共振成像(fMRI)研究,其中包括老年和年轻参与者(38 人)的静息和认知状态。为了根据图论分析功能连接结构,我们使用了连接网络的最小支配集(MDS)和最小命中集(MHS)。根据我们的分析,年龄和心理活动对脑区的命中集和支配集有显著影响。结果还表明,随着年龄的增长,大脑的工作机制在特定计算负荷的情况下会从局部变为扩散。因此,所提出的方法可作为临床程序的补充方法,用于评估和测量衰老对人脑的影响。
{"title":"The Impact of Mental Activities and Age on Brain Network: An Analysis From Complex Network Perspective","authors":"Cemre Candemir;Vahid Khalilpour Akram;Ali Saffet Gonul","doi":"10.1109/TETCI.2024.3374957","DOIUrl":"https://doi.org/10.1109/TETCI.2024.3374957","url":null,"abstract":"The functional connections in the human brain offer many opportunities to explore changing dynamic patterns of the brain under different circumstances. Different factors such as age, mental activity, and health status may affect functional connectivity, connected regions, and the robustness of connections in the brain. In this study, we evaluate the functional connectivity of the whole brain changing with age from a complex network perspective during different processes in healthy adults. We conducted a functional Magnetic Resonance Imaging (fMRI) study that includes both resting and cognitive states with elderly and young participants (n = 38). To analyze the functional connectivity structure in view of graph theory, we used the minimum dominating sets (MDS) and then minimum hitting sets (MHS) of the connectivity networks. Based on our analysis, age, and mental activity show a significant effect on the hitting sets and dominating sets of the brain regions. The results also indicate that the working mechanism of the brain changes from local to diffused under the circumstances of a particular computational load with age. In this manner, the proposed method can be used as a complementary method for clinical procedures to evaluate and measure the effect of aging on the human brain.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Emerging Topics in Computational Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1