On-demand photonic Ising machine with simplified Hamiltonian calculation by phase encoding and intensity detection

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-05-24 DOI:10.1038/s42005-024-01658-x
Jiayi Ouyang, Yuxuan Liao, Zhiyao Ma, Deyang Kong, Xue Feng, Xiang Zhang, Xiaowen Dong, Kaiyu Cui, Fang Liu, Wei Zhang, Yidong Huang
{"title":"On-demand photonic Ising machine with simplified Hamiltonian calculation by phase encoding and intensity detection","authors":"Jiayi Ouyang, Yuxuan Liao, Zhiyao Ma, Deyang Kong, Xue Feng, Xiang Zhang, Xiaowen Dong, Kaiyu Cui, Fang Liu, Wei Zhang, Yidong Huang","doi":"10.1038/s42005-024-01658-x","DOIUrl":null,"url":null,"abstract":"The photonic Ising machine is a new paradigm of optical computing that takes advantage of the unique properties of light wave propagation, parallel processing, and low-loss transmission. Thus, the process of solving combinatorial optimization problems can be accelerated through photonic/optoelectronic devices, but implementing photonic Ising machines that can solve arbitrary large-scale Ising problems with fast speed remains challenging. In this work, we have proposed and demonstrated the Phase Encoding and Intensity Detection Ising Annealer (PEIDIA) capable of solving arbitrary Ising problems on demand. The PEIDIA employs the heuristic algorithm and requires only one step of optical linear transformation with simplified Hamiltonian calculation by encoding the Ising spins on the phase term of the optical field and performing intensity detection during the solving process. As a proof of principle, several 20 and 30-spin Ising problems have been solved with high ground state probability (≥0.97/0.85 for the 20/30-spin Ising model). Photonic Ising machines exploit the parallelism and high propagation speed of light to solve combinatorial optimization tasks. The authors propose and demonstrate a photonic Ising machine with a fully reconfigurable optical vector-matrix transformation system and a modified algorithm based on simulated annealing, solving 20 and 30-spin Ising problems with high ground state probability.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01658-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01658-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photonic Ising machine is a new paradigm of optical computing that takes advantage of the unique properties of light wave propagation, parallel processing, and low-loss transmission. Thus, the process of solving combinatorial optimization problems can be accelerated through photonic/optoelectronic devices, but implementing photonic Ising machines that can solve arbitrary large-scale Ising problems with fast speed remains challenging. In this work, we have proposed and demonstrated the Phase Encoding and Intensity Detection Ising Annealer (PEIDIA) capable of solving arbitrary Ising problems on demand. The PEIDIA employs the heuristic algorithm and requires only one step of optical linear transformation with simplified Hamiltonian calculation by encoding the Ising spins on the phase term of the optical field and performing intensity detection during the solving process. As a proof of principle, several 20 and 30-spin Ising problems have been solved with high ground state probability (≥0.97/0.85 for the 20/30-spin Ising model). Photonic Ising machines exploit the parallelism and high propagation speed of light to solve combinatorial optimization tasks. The authors propose and demonstrate a photonic Ising machine with a fully reconfigurable optical vector-matrix transformation system and a modified algorithm based on simulated annealing, solving 20 and 30-spin Ising problems with high ground state probability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相位编码和强度检测简化哈密顿计算的按需光子伊辛机
光子伊辛机是一种新的光计算模式,它利用了光波传播、并行处理和低损耗传输的独特特性。因此,通过光子/光电设备可以加速解决组合优化问题的过程,但实现能快速解决任意大规模伊辛问题的光子伊辛机仍具有挑战性。在这项工作中,我们提出并演示了能够按需解决任意伊兴问题的相位编码和强度检测伊兴分析器(PEIDIA)。PEIDIA 采用启发式算法,只需一步光学线性变换,通过在光场相位项上编码伊辛自旋和在求解过程中进行强度检测,简化了哈密顿计算。作为原理证明,我们已经解决了几个 20 和 30 自旋伊辛问题,基态概率很高(20/30 自旋伊辛模型的基态概率≥0.97/0.85)。光子伊辛机利用光的并行性和高传播速度来解决组合优化任务。作者提出并演示了一种光子伊辛机,它具有完全可重构的光矢量矩阵变换系统和基于模拟退火的改进算法,可解决具有高基态概率的 20 和 30 自旋伊辛问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented Correlation-driven topological Kondo superconductors Cell stiffening is a label-free indicator of reactive oxygen species-induced intracellular acidification Mitigating density fluctuations in particle-based active nematic simulations Enhancing shift current response via virtual multiband transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1