Luis Carlos Colocho Hurtarte, Ivan Francisco Souza, Rodrigo Teixeira Ávila, Luís Fernando J. Almeida, Gabriela Soares, Leonardus Vergütz, Ivo Ribeiro Silva
{"title":"Nitrogen limitation in eucalypt roots: a cascading influence on the mobilization of soil organic matter","authors":"Luis Carlos Colocho Hurtarte, Ivan Francisco Souza, Rodrigo Teixeira Ávila, Luís Fernando J. Almeida, Gabriela Soares, Leonardus Vergütz, Ivo Ribeiro Silva","doi":"10.1007/s00374-024-01832-x","DOIUrl":null,"url":null,"abstract":"<p>Emerging scientific evidence has shown that root exudates may trigger the mobilization of soil organic matter (SOM), particularly under nutrient limitation. However, the role of changes in root morphology, metabolism, exudation, and their impact on rhizospheric properties and SOM remain poorly known. To address this issue, we conducted a rhizobox experiment for 50 days in which pre-grown eucalypt plants (120 days-old) were supplied with nutrient solutions providing either limited (0.0 mg L<sup>− 1</sup>) or normal N supply (196.0 mg L<sup>− 1</sup>). After 48 days, we used a <sup>13</sup>CO<sub>2</sub> pulse labeling to track the impact of N limitation on C translocation to roots and soil respiration. After the 50th day, we assessed root morphology and metabolism, rhizospheric pH, mineral crystallinity, C and N contents, and the molecular composition of SOM. Under N limitation, eucalypt plants showed reduced photosynthesis, increased their root-to-shoot ratio and root branching, with organic acids prevailing among root metabolites. Overall, N-limited eucalypt plants led to a cascading of changes in the rhizosphere: increased concentrations of recently fixed <sup>13</sup>C-CO<sub>2</sub>, citrate, and N-bearing compounds, whereas soil pH and Fe-bound SOM decreased. These results were not followed by significant changes in microbial biomass, neither fungi: bacteria nor Gram-positive: Gram-negative ratios. Our results show that under N limitation, eucalypt roots exhibited a cascade of morpho-physiological adjustments that ultimately increased the mobilization of some SOM pools. Therefore, the combined impacts of those root morpho-physiological traits on the mobilization of SOM may reduce the overall soil C sink of eucalypt forests under N limitation.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"19 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01832-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging scientific evidence has shown that root exudates may trigger the mobilization of soil organic matter (SOM), particularly under nutrient limitation. However, the role of changes in root morphology, metabolism, exudation, and their impact on rhizospheric properties and SOM remain poorly known. To address this issue, we conducted a rhizobox experiment for 50 days in which pre-grown eucalypt plants (120 days-old) were supplied with nutrient solutions providing either limited (0.0 mg L− 1) or normal N supply (196.0 mg L− 1). After 48 days, we used a 13CO2 pulse labeling to track the impact of N limitation on C translocation to roots and soil respiration. After the 50th day, we assessed root morphology and metabolism, rhizospheric pH, mineral crystallinity, C and N contents, and the molecular composition of SOM. Under N limitation, eucalypt plants showed reduced photosynthesis, increased their root-to-shoot ratio and root branching, with organic acids prevailing among root metabolites. Overall, N-limited eucalypt plants led to a cascading of changes in the rhizosphere: increased concentrations of recently fixed 13C-CO2, citrate, and N-bearing compounds, whereas soil pH and Fe-bound SOM decreased. These results were not followed by significant changes in microbial biomass, neither fungi: bacteria nor Gram-positive: Gram-negative ratios. Our results show that under N limitation, eucalypt roots exhibited a cascade of morpho-physiological adjustments that ultimately increased the mobilization of some SOM pools. Therefore, the combined impacts of those root morpho-physiological traits on the mobilization of SOM may reduce the overall soil C sink of eucalypt forests under N limitation.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.