Causes and multiyear predictability of the rapid acceleration of U.S. Southeast Sea level rise after 2010

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-05-24 DOI:10.1038/s41612-024-00670-w
Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Qinxue Gu, Shouwei Li
{"title":"Causes and multiyear predictability of the rapid acceleration of U.S. Southeast Sea level rise after 2010","authors":"Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Qinxue Gu, Shouwei Li","doi":"10.1038/s41612-024-00670-w","DOIUrl":null,"url":null,"abstract":"The rate of sea level rise (SLR) along the Southeast Coast of the U.S. increased significantly after 2010. While anthropogenic radiative forcing causes an acceleration of global mean SLR, regional changes in the rate of SLR are strongly influenced by internal variability. Here we use observations and climate models to show that the rapid increase in the rate of SLR along the U.S. Southeast Coast after 2010 is due in part to multidecadal buoyancy-driven Atlantic meridional overturning circulation (AMOC) variations, along with heat transport convergence from wind-driven ocean circulation changes. We show that an initialized decadal prediction system can provide skillful regional SLR predictions induced by AMOC variations 5 years in advance, while wind-driven sea level variations are predictable 2 years in advance. Our results suggest that the rate of coastal SLR and its associated flooding risk along the U.S. southeastern seaboard are potentially predictable on multiyear timescales.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00670-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00670-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rate of sea level rise (SLR) along the Southeast Coast of the U.S. increased significantly after 2010. While anthropogenic radiative forcing causes an acceleration of global mean SLR, regional changes in the rate of SLR are strongly influenced by internal variability. Here we use observations and climate models to show that the rapid increase in the rate of SLR along the U.S. Southeast Coast after 2010 is due in part to multidecadal buoyancy-driven Atlantic meridional overturning circulation (AMOC) variations, along with heat transport convergence from wind-driven ocean circulation changes. We show that an initialized decadal prediction system can provide skillful regional SLR predictions induced by AMOC variations 5 years in advance, while wind-driven sea level variations are predictable 2 years in advance. Our results suggest that the rate of coastal SLR and its associated flooding risk along the U.S. southeastern seaboard are potentially predictable on multiyear timescales.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2010 年后美国东南部海平面迅速加速上升的原因和多年可预测性
2010 年以后,美国东南沿海的海平面上升速度显著加快。虽然人为辐射强迫导致全球平均海平面上升速度加快,但区域海平面上升速度的变化受到内部变率的强烈影响。在此,我们利用观测数据和气候模式表明,2010 年后美国东南沿海地区可持续土地退化速度的快速增加,部分是由于多年代浮力驱动的大西洋经向翻转环流(AMOC)变化,以及风驱动的海洋环流变化所产生的热传输汇聚。我们的研究表明,初始化的十年期预测系统可以提前 5 年对 AMOC 变化引起的区域可吸入土地 面积变化做出准确预测,而风驱动的海平面变化则可以提前 2 年预测。我们的研究结果表明,美国东南沿海的沿岸可持续土地退化速度及其相关的洪水风险在多年时间尺度上是可以预测的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
A reconstructed PDO history from an ice core isotope record on the central Tibetan Plateau Projecting dry-wet abrupt alternation across China from the perspective of soil moisture Increasing Arctic dust suppresses the reduction of ice nucleation in the Arctic lower troposphere by warming Attribution of summer 2022 extreme wildfire season in Southwest France to anthropogenic climate change Improving PM10 sensor accuracy in urban areas through calibration in Timișoara
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1