Geochemical implications of uranium-bearing thucholite aggregates in the Upper Permian Kupferschiefer shale, Lubin district, Poland

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2024-05-25 DOI:10.1007/s00126-024-01279-y
Marcin D. Syczewski, Paweł Panajew, Leszek Marynowski, Marta Waliczek, Andrzej Borkowski, Jan Rohovec, Šárka Matoušková, Ilona Sekudewicz, Malwina Liszewska, Bartłomiej Jankiewicz, Aliya N. Mukhamed’yarova, Mirosław Słowakiewicz
{"title":"Geochemical implications of uranium-bearing thucholite aggregates in the Upper Permian Kupferschiefer shale, Lubin district, Poland","authors":"Marcin D. Syczewski, Paweł Panajew, Leszek Marynowski, Marta Waliczek, Andrzej Borkowski, Jan Rohovec, Šárka Matoušková, Ilona Sekudewicz, Malwina Liszewska, Bartłomiej Jankiewicz, Aliya N. Mukhamed’yarova, Mirosław Słowakiewicz","doi":"10.1007/s00126-024-01279-y","DOIUrl":null,"url":null,"abstract":"<p>New inorganic and organic geochemical data from thucholite in the Upper Permian (Wuchiapingian) Kupferschiefer (T1) shale collected at the Polkowice-Sieroszowice Cu-Ag mine in Poland are presented. Thucholite, which forms spherical or granular clusters, appears scattered in the T1 dolomitic shale at the oxic-anoxic boundary occurring within the same shale member. The composition of thucholite concretions and the T1 shale differs by a higher content of U- and REE-enriched mineral phases within the thucholite concretions compared to the T1 shale, suggesting a different mineralising history. The differences also comprise higher N<sub>tot</sub>, C<sub>tot</sub>, H<sub>tot</sub>, S<sub>tot</sub> contents and higher C/N, C/S ratios in thucholite than in the T1 shale. The hydrocarbon composition of the thucholite and the surrounding T1 shale also varies. Both are dominated by polycyclic aromatic compounds and their phenyl derivatives. However, higher abundances of unsubstituted polycyclic aromatic hydrocarbons in the thucholite are indicative of its pyrogenic origin. Pyrolytic compounds such as benz[<i>a</i>]anthracene or benzo[<i>a</i>]pyrene are more typical of the thucholite than the T1 shale. Microscopic observations of the thucholite and its molecular composition suggest that it represents well-rounded small charcoal fragments. These charcoals were formed during low-temperature combustion, as confirmed by semifusinite reflectance values, indicating surface fire temperatures of about 400 °C, and the absence of the high-temperature pyrogenic polycyclic aromatic hydrocarbons. Charred detrital particles, likely the main source of insoluble organic matter in the thucholite, migrated to the sedimentary basin in the form of spherical carbonaceous particulates, which adsorbed uranium and REE in particular, which would further explain their different contents and sorption properties in the depositional environment. Finally, the difference in mineral content between thucholite and the T1 shale could also have been caused by microbes, which might have formed biofilms on mineral particles, and caused a change in the original mineral composition.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01279-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

New inorganic and organic geochemical data from thucholite in the Upper Permian (Wuchiapingian) Kupferschiefer (T1) shale collected at the Polkowice-Sieroszowice Cu-Ag mine in Poland are presented. Thucholite, which forms spherical or granular clusters, appears scattered in the T1 dolomitic shale at the oxic-anoxic boundary occurring within the same shale member. The composition of thucholite concretions and the T1 shale differs by a higher content of U- and REE-enriched mineral phases within the thucholite concretions compared to the T1 shale, suggesting a different mineralising history. The differences also comprise higher Ntot, Ctot, Htot, Stot contents and higher C/N, C/S ratios in thucholite than in the T1 shale. The hydrocarbon composition of the thucholite and the surrounding T1 shale also varies. Both are dominated by polycyclic aromatic compounds and their phenyl derivatives. However, higher abundances of unsubstituted polycyclic aromatic hydrocarbons in the thucholite are indicative of its pyrogenic origin. Pyrolytic compounds such as benz[a]anthracene or benzo[a]pyrene are more typical of the thucholite than the T1 shale. Microscopic observations of the thucholite and its molecular composition suggest that it represents well-rounded small charcoal fragments. These charcoals were formed during low-temperature combustion, as confirmed by semifusinite reflectance values, indicating surface fire temperatures of about 400 °C, and the absence of the high-temperature pyrogenic polycyclic aromatic hydrocarbons. Charred detrital particles, likely the main source of insoluble organic matter in the thucholite, migrated to the sedimentary basin in the form of spherical carbonaceous particulates, which adsorbed uranium and REE in particular, which would further explain their different contents and sorption properties in the depositional environment. Finally, the difference in mineral content between thucholite and the T1 shale could also have been caused by microbes, which might have formed biofilms on mineral particles, and caused a change in the original mineral composition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波兰卢宾地区上二叠统库珀弗谢费页岩中含铀褐铁矿集合体的地球化学影响
本文介绍了在波兰 Polkowice-Sieroszowice 铜金矿采集的上二叠统(武奇亚平统)Kupferschiefer(T1)页岩中的褐铁矿的新的无机和有机地球化学数据。形成球状或颗粒状团块的褐铁矿散布在 T1 白云质页岩中,位于同一页岩成分的缺氧-缺氧边界。褐铁矿凝块与 T1 页岩的成分不同,与 T1 页岩相比,褐铁矿凝块中富含铀和稀土元素的矿物相含量更高,这表明其成矿历史不同。与 T1 页岩相比,Thucholite 中的 Ntot、Ctot、Htot、Stot 含量更高,C/N、C/S 比率也更高。苏合香岩和周围 T1 页岩的碳氢化合物成分也各不相同。两者都以多环芳香族化合物及其苯基衍生物为主。不过,苏合香岩中未取代的多环芳烃含量较高,这表明苏合香岩起源于热成岩。苯并[a]蒽或苯并[a]芘等热解化合物在苏赫岩中比在 T1 页岩中更为典型。对褐铁矿及其分子组成的显微观察表明,褐铁矿代表了圆形的小木炭碎片。这些木炭是在低温燃烧过程中形成的,半透明反射率值证实了这一点,表明表面着火温度约为 400 °C,而且不含高温致热多环芳烃。烧焦的碎屑颗粒可能是褐铁矿中不溶性有机物的主要来源,它们以球形碳质颗粒的形式迁移到沉积盆地,尤其吸附了铀和 REE,这进一步解释了它们在沉积环境中的不同含量和吸附特性。最后,Thucholite 和 T1 页岩之间矿物含量的差异也可能是由微生物造成的,微生物可能在矿物颗粒上形成生物膜,并导致原始矿物成分发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
El Zorro: early Jurassic intrusion-related gold (IRG) mineralization in the oldest, western-most segment of the Andean Cordillera of Northern Chile Trace element and isotope composition of calcite, apatite, and zircon associated with magmatic sulfide globules Tracing fluid signature and metal mobility in complex orogens: insights from Pb-Zn mineralization in the Pyrenean Axial Zone Revealing Yukon’s hidden treasure: an atomic-scale investigation of Carlin-type gold mineralization in the Nadaleen Trend, Canada Gold mineralization in the hydrothermal field at the termination of a detachment fault: A case study of the Tianxiu Vent Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1