首页 > 最新文献

Mineralium Deposita最新文献

英文 中文
The sulfur isotope evolution of the Duobuza Cu-Au porphyry deposit in the Duolong district, Central Tibet, China 中国西藏中部多隆地区多布扎铜金斑岩矿床硫同位素演变过程
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-14 DOI: 10.1007/s00126-024-01339-3
Jia Sun, Jingwen Mao, Georges Beaudoin, Ryan Mathur, Xianzhe Duan, Yubin Li

Understanding the sulfur isotope cycle is essential in developing genetic models of porphyry copper deposits. In this paper, we characterize the sulfur isotope evolution of the Duobuza deposit, a typical porphyry Cu-Au deposit, using the sulfur isotope composition of sulfides in successive hydrothermal stages. We show (1) an increase of δ34S values from the inner potassic core (−4.8 to −0.4‰, n = 37) to the peripheral propylitic halo (1.2 to 4.8‰, n = 5) during the early stage; (2) an increase from the early stage potassic alteration to the transitional stage sericite-chlorite alteration (−2.6 to 0.6‰, n = 25); (3) a progressive enrichment, from the quartz-dominated veins (−3.1 to 0.5‰, n = 10), through the anhydrite-dominated veins (−2 to 0.6‰, n = 7), and to the pyrite-dominated veins (−0.7 to 2.3‰, n = 7) during the late stage. The integration of sulfur and oxygen isotope and fluid inclusion data, modeling and mineralogical evidence suggests that the 34S depletion within the potassic core compared to the propylitic halo can be best explained by boiling-induced oxidation of hydrothermal fluids. The increase in δ34S from potassic alteration, through sericite-chlorite alteration, to the late stage hydrothermal veins is interpreted to be related to the partial reduction of an oxidized fluid by water-rock interaction. Our findings highlight the potential of sulfur isotope data to assist exploration for Cu-Au porphyry deposits where a predictable zonation pattern is present.

了解硫同位素循环对建立斑岩铜矿床的遗传模型至关重要。在本文中,我们利用硫化物在连续热液阶段的硫同位素组成,描述了多布扎矿床(一个典型的斑岩型铜金矿床)的硫同位素演变特征。我们发现:(1)在早期阶段,δ34S 值从内部的钾长石核心(-4.8 至 -0.4‰,n = 37)增加到外围的丙基晕(1.2 至 4.8‰,n = 5);(2)从早期阶段的钾长石蚀变增加到过渡阶段的绢云母-绿泥石蚀变(-2.6 至 0.6‰,n = 25);(3)在晚期,从以石英为主的矿脉(-3.1 至 0.5‰,n = 10),到以无水矿为主的矿脉(-2 至 0.6‰,n = 7),再到以黄铁矿为主的矿脉(-0.7 至 2.3‰,n = 7),逐渐富集。综合硫、氧同位素和流体包裹体数据、建模和矿物学证据表明,钾盐岩岩心与丙炔岩晕相比出现的 34S 贫化,最好的解释是热液沸腾引起的氧化作用。从钾长石蚀变到绢云母-绿泥石蚀变,再到晚期热液矿脉,δ34S的增加被解释为与氧化流体在水-岩石相互作用下的部分还原有关。我们的研究结果凸显了硫同位素数据在协助勘探存在可预测分带模式的铜金斑岩矿床方面的潜力。
{"title":"The sulfur isotope evolution of the Duobuza Cu-Au porphyry deposit in the Duolong district, Central Tibet, China","authors":"Jia Sun, Jingwen Mao, Georges Beaudoin, Ryan Mathur, Xianzhe Duan, Yubin Li","doi":"10.1007/s00126-024-01339-3","DOIUrl":"https://doi.org/10.1007/s00126-024-01339-3","url":null,"abstract":"<p>Understanding the sulfur isotope cycle is essential in developing genetic models of porphyry copper deposits. In this paper, we characterize the sulfur isotope evolution of the Duobuza deposit, a typical porphyry Cu-Au deposit, using the sulfur isotope composition of sulfides in successive hydrothermal stages. We show (1) an increase of δ<sup>34</sup>S values from the inner potassic core (−4.8 to −0.4‰, <i>n</i> = 37) to the peripheral propylitic halo (1.2 to 4.8‰, <i>n</i> = 5) during the early stage; (2) an increase from the early stage potassic alteration to the transitional stage sericite-chlorite alteration (−2.6 to 0.6‰, <i>n</i> = 25); (3) a progressive enrichment, from the quartz-dominated veins (−3.1 to 0.5‰, <i>n</i> = 10), through the anhydrite-dominated veins (−2 to 0.6‰, <i>n</i> = 7), and to the pyrite-dominated veins (−0.7 to 2.3‰, <i>n</i> = 7) during the late stage. The integration of sulfur and oxygen isotope and fluid inclusion data, modeling and mineralogical evidence suggests that the <sup>34</sup>S depletion within the potassic core compared to the propylitic halo can be best explained by boiling-induced oxidation of hydrothermal fluids. The increase in δ<sup>34</sup>S from potassic alteration, through sericite-chlorite alteration, to the late stage hydrothermal veins is interpreted to be related to the partial reduction of an oxidized fluid by water-rock interaction. Our findings highlight the potential of sulfur isotope data to assist exploration for Cu-Au porphyry deposits where a predictable zonation pattern is present.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"51 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ore and gangue mineral textures, fluid inclusions, mesoscopically structured quartz and pyrite, and their bearing on the genesis of hydrothermal breccias in the low-sulfidation Surnak gold deposit, SE Bulgaria 矿石和煤矸石矿物质地、流体包裹体、中观结构石英和黄铁矿及其对保加利亚东南部低硫化苏尔纳克金矿床热液角砾岩成因的影响
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-14 DOI: 10.1007/s00126-024-01337-5
Irina Marinova, Aleksandar Gadzhalov, Gulcan Bozkaya, Mihail Tarassov

This paper provides comprehensive analyses of mineral microtextures, nanoparticulate electrum, defective crystal structures of key primary hydrothermal minerals - quartz and pyrite, the bulk sulfur isotopic composition of pyrite and marcasite, and fluid inclusions in hydrothermal quartz and calcite, all aimed at characterizing ore mineralization. The study primarily focuses on samples collected from a steep normal fault and its damage zone, which formed during hydrothermal brecciation, while also incorporating samples from other thinner brecciation zones. The data utilized in this study originate from the Surnak (or Sarnak) gold deposit located in the Eastern Rhodope Mountains of Southeast Bulgaria. This deposit, characterized as low-sulfidation, offers a distinctive geological context for exploring the hydrothermal processes associated with hydrothermal brecciation, colloidal, and mesocrystal formation. The unique microtextures and mesocrystal structures observed in quartz and pyrite crystal lattices offer valuable insights into the colloidal stage that the paleohydrothermal solution experienced during hydrothermal brecciation, pressure drop, and subsequent boiling. Bladed-textured calcite crystals, containing both vapor-rich and liquid-rich inclusions, provide direct evidence of fluid boiling. Fluid inclusion data from hydrothermal quartz further suggest the involvement of two distinct fluid types, each with different temperatures and salinities. Our findings point to a causal relationship between brecciation episodes, fluid boiling, nanoparticle nucleation, the colloidal stage, and the subsequent formation of mesocrystals.

本文全面分析了主要热液原生矿物质--石英和黄铁矿--的矿物微观结构、纳米微粒电荷、晶体结构缺陷、黄铁矿和云母石的大量硫同位素组成以及热液石英和方解石中的流体包裹体,旨在确定矿石成矿特征。这项研究主要侧重于从热液角砾岩化过程中形成的陡峭正断层及其破坏带采集的样本,同时也包括从其他较薄的角砾岩化带采集的样本。本研究使用的数据来自位于保加利亚东南部东罗多彼山脉的 Surnak(或 Sarnak)金矿床。该矿床具有低硫化特征,为探索与热液角砾岩、胶体和中晶形成相关的热液过程提供了独特的地质背景。在石英和黄铁矿晶格中观察到的独特微观纹理和介晶结构为了解古热液在热液破碎、压力下降和随后的沸腾过程中所经历的胶体阶段提供了宝贵的见解。叶片状纹理的方解石晶体含有富含蒸汽和液体的包裹体,提供了流体沸腾的直接证据。热液石英中的流体包裹体数据进一步表明,有两种不同的流体参与其中,每种流体的温度和盐度都不同。我们的研究结果表明,角砾化事件、流体沸腾、纳米粒子成核、胶体阶段以及介晶的后续形成之间存在因果关系。
{"title":"Ore and gangue mineral textures, fluid inclusions, mesoscopically structured quartz and pyrite, and their bearing on the genesis of hydrothermal breccias in the low-sulfidation Surnak gold deposit, SE Bulgaria","authors":"Irina Marinova, Aleksandar Gadzhalov, Gulcan Bozkaya, Mihail Tarassov","doi":"10.1007/s00126-024-01337-5","DOIUrl":"https://doi.org/10.1007/s00126-024-01337-5","url":null,"abstract":"<p>This paper provides comprehensive analyses of mineral microtextures, nanoparticulate electrum, defective crystal structures of key primary hydrothermal minerals - quartz and pyrite, the bulk sulfur isotopic composition of pyrite and marcasite, and fluid inclusions in hydrothermal quartz and calcite, all aimed at characterizing ore mineralization. The study primarily focuses on samples collected from a steep normal fault and its damage zone, which formed during hydrothermal brecciation, while also incorporating samples from other thinner brecciation zones. The data utilized in this study originate from the Surnak (or Sarnak) gold deposit located in the Eastern Rhodope Mountains of Southeast Bulgaria. This deposit, characterized as low-sulfidation, offers a distinctive geological context for exploring the hydrothermal processes associated with hydrothermal brecciation, colloidal, and mesocrystal formation. The unique microtextures and mesocrystal structures observed in quartz and pyrite crystal lattices offer valuable insights into the colloidal stage that the paleohydrothermal solution experienced during hydrothermal brecciation, pressure drop, and subsequent boiling. Bladed-textured calcite crystals, containing both vapor-rich and liquid-rich inclusions, provide direct evidence of fluid boiling. Fluid inclusion data from hydrothermal quartz further suggest the involvement of two distinct fluid types, each with different temperatures and salinities. Our findings point to a causal relationship between brecciation episodes, fluid boiling, nanoparticle nucleation, the colloidal stage, and the subsequent formation of mesocrystals.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"23 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trace element distributions among Cu-(Fe)-sulfides from the Olympic Dam Cu-U-Au-Ag deposit, South Australia
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-08 DOI: 10.1007/s00126-024-01344-6
Samuel A. King, Nigel J. Cook, Cristiana L. Ciobanu, Kathy Ehrig, Sarah Gilbert, Benjamin Wade, Yuri T. Campo Rodriguez

Chalcocite, bornite, and chalcopyrite are the main copper minerals in the world-class Olympic Dam Cu-U-Au-Ag deposit, South Australia. Olympic Dam is characterized by systematic, inwards and upwards zonation of Cu-Fe-sulfide assemblages, encompassing chalcopyrite-pyrite, bornite-chalcopyrite, bornite-chalcocite and chalcocite-only zones. Trace element analysis of Cu-(Fe)-sulfides (~ 3500 spot analyses) by laser ablation inductively coupled plasma mass spectrometry on samples from across the deposit identifies the role of spatial position, protolith, and the presence/absence of co-existing sulfides (sphalerite, tetrahedrite-tennantite and carrollite) in control of trace element endowment. Cu-(Fe)-sulfides host concentrations of precious metals (Ag, Au), potential value-add elements (Se, Te, Bi, As, Sb, In) and deleterious elements (Pb, Hg). Where bornite-chalcocite co-exist, Ag is partitioned into chalcocite and Bi into bornite; in the absence of either bornite or chalcocite, chalcopyrite is a significant host for both elements. Chalcocite from the chalcocite-only zone is depleted in Bi-Te-Ag-Au compared to the bornite-chalcocite zone, demonstrating the role of bornite as an initial scavenger of these elements. A distinct inherited Cr-Ni-Zn signature is identified in chalcopyrite hosted by banded iron formation derived lithologies and proximal to crosscutting dykes. Despite some variation, Cu-(Fe)-sulfides generally contain more Bi and lesser Se towards deeper levels. The concentrations of these elements in paired bornite-chalcocite assemblages show promise as ore vectors, whereas Ag/Te in brown bornite and Se/Ag in chalcopyrite are prospective lateral vectors. Results carry implications for understanding deposit evolution, provide insights towards developing reconnaissance exploration vectors, and offer guidance on trace element deportments likely to impact ore quality and geometallurgical performance.

{"title":"Trace element distributions among Cu-(Fe)-sulfides from the Olympic Dam Cu-U-Au-Ag deposit, South Australia","authors":"Samuel A. King, Nigel J. Cook, Cristiana L. Ciobanu, Kathy Ehrig, Sarah Gilbert, Benjamin Wade, Yuri T. Campo Rodriguez","doi":"10.1007/s00126-024-01344-6","DOIUrl":"https://doi.org/10.1007/s00126-024-01344-6","url":null,"abstract":"<p>Chalcocite, bornite, and chalcopyrite are the main copper minerals in the world-class Olympic Dam Cu-U-Au-Ag deposit, South Australia. Olympic Dam is characterized by systematic, inwards and upwards zonation of Cu-Fe-sulfide assemblages, encompassing chalcopyrite-pyrite, bornite-chalcopyrite, bornite-chalcocite and chalcocite-only zones. Trace element analysis of Cu-(Fe)-sulfides (~ 3500 spot analyses) by laser ablation inductively coupled plasma mass spectrometry on samples from across the deposit identifies the role of spatial position, protolith, and the presence/absence of co-existing sulfides (sphalerite, tetrahedrite-tennantite and carrollite) in control of trace element endowment. Cu-(Fe)-sulfides host concentrations of precious metals (Ag, Au), potential value-add elements (Se, Te, Bi, As, Sb, In) and deleterious elements (Pb, Hg). Where bornite-chalcocite co-exist, Ag is partitioned into chalcocite and Bi into bornite; in the absence of either bornite or chalcocite, chalcopyrite is a significant host for both elements. Chalcocite from the chalcocite-only zone is depleted in Bi-Te-Ag-Au compared to the bornite-chalcocite zone, demonstrating the role of bornite as an initial scavenger of these elements. A distinct inherited Cr-Ni-Zn signature is identified in chalcopyrite hosted by banded iron formation derived lithologies and proximal to crosscutting dykes. Despite some variation, Cu-(Fe)-sulfides generally contain more Bi and lesser Se towards deeper levels. The concentrations of these elements in paired bornite-chalcocite assemblages show promise as ore vectors, whereas Ag/Te in brown bornite and Se/Ag in chalcopyrite are prospective lateral vectors. Results carry implications for understanding deposit evolution, provide insights towards developing reconnaissance exploration vectors, and offer guidance on trace element deportments likely to impact ore quality and geometallurgical performance.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"12 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-07 DOI: 10.1007/s00126-024-01341-9
Mario A. Guzman, Thomas Monecke, T. James Reynolds

Sunnyside is a well-preserved Miocene polymetallic vein deposit located in the Western San Juan Mountains of Colorado, USA. The steeply dipping veins extend vertically for ~ 600 m and can be traced laterally over a combined length of ~ 2100 m. Fracture-controlled fluid flow dominated during the pre-ore stage. Subsequent ore deposition along major extensional structures took place at far-from-equilibrium conditions resulting in the formation of ore mineral dendrites in a silica matrix that was originally noncrystalline. Recrystallization of the noncrystalline silica to quartz caused extensive microtextural modification of the veins during and after the ore-stage. Microtextural evidence suggests that essentially all quartz in the ore-stage veins originated from a noncrystalline silica precursor. The deposition of ore mineral dendrites and noncrystalline silica is interpreted to have occurred during repeated fluid flashing events over the lifetime of the hydrothermal system. A period of quasi steady-state fluid flow occurred during the post-ore stage resulting in the formation of gangue minerals in open spaces in the veins. Fluid inclusion evidence suggests that the veins at Sunnyside formed at the transition between the epithermal and porphyry environments at ~ 1300–1900 m below the paleowater table at temperatures ranging up to ~ 345 °C. 

{"title":"Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA","authors":"Mario A. Guzman, Thomas Monecke, T. James Reynolds","doi":"10.1007/s00126-024-01341-9","DOIUrl":"https://doi.org/10.1007/s00126-024-01341-9","url":null,"abstract":"<p>Sunnyside is a well-preserved Miocene polymetallic vein deposit located in the Western San Juan Mountains of Colorado, USA. The steeply dipping veins extend vertically for ~ 600 m and can be traced laterally over a combined length of ~ 2100 m. Fracture-controlled fluid flow dominated during the pre-ore stage. Subsequent ore deposition along major extensional structures took place at far-from-equilibrium conditions resulting in the formation of ore mineral dendrites in a silica matrix that was originally noncrystalline. Recrystallization of the noncrystalline silica to quartz caused extensive microtextural modification of the veins during and after the ore-stage. Microtextural evidence suggests that essentially all quartz in the ore-stage veins originated from a noncrystalline silica precursor. The deposition of ore mineral dendrites and noncrystalline silica is interpreted to have occurred during repeated fluid flashing events over the lifetime of the hydrothermal system. A period of quasi steady-state fluid flow occurred during the post-ore stage resulting in the formation of gangue minerals in open spaces in the veins. Fluid inclusion evidence suggests that the veins at Sunnyside formed at the transition between the epithermal and porphyry environments at ~ 1300–1900 m below the paleowater table at temperatures ranging up to ~ 345 °C. </p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"89 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold in pyrite revisited: insights into remobilization during deformation using electron backscatter diffraction and LA-ICP-MS
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-04 DOI: 10.1007/s00126-024-01346-4
Pascal Ouiya, Didier Béziat, Stefano Salvi, German Velásquez, Séta Naba, Arnaud Proietti

In a gold deposit near Nassara, southern Burkina Faso, gold occurs closely associated with pyrite within a network of veins hosted by metavolcanic and metasedimentary rocks. Using SEM and LA-ICP-MS analyses, we identified three generations of pyrite with distinct roles in gold mineralization. Pyrite 1 (Py1) formed early during mineralization, replacing alteration minerals like ankerite in metabasalt. Pyrite 2 (Py2) developed around Py1 in pressure shadows caused by localized micro-shear zone reactivation during successive micro-seismic events. Pyrite 2 is enriched in As and Au, unlike Py1. Pyrite 3 (Py3), unrelated to mineralization, formed at a later stage. Gold occurs in pyrite as micro-inclusions (in Py1 and Py2), fracture-fillings (mainly in Py2), and within the pyrite structure as invisible gold, including nanoparticles (predominantly in Py2). Combining electron backscatter diffraction (EBSD) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis reveals that deformation-induced misorientation of pyrite facilitated the remobilization of invisible gold, which subsequently re-precipitated as colloidal particles along sub-grain boundaries and within fractures, mimicking visible inclusions. These findings demonstrate that gold perceived as inclusions (visible or invisible) often precipitates within micro/nano-fissures and sub-grain boundaries during remobilization. This highlights the critical importance of thorough ore characterization for accurately determining gold deportment. Such insights advance our understanding of mineralization processes and support the development of more efficient recovery strategies.

{"title":"Gold in pyrite revisited: insights into remobilization during deformation using electron backscatter diffraction and LA-ICP-MS","authors":"Pascal Ouiya, Didier Béziat, Stefano Salvi, German Velásquez, Séta Naba, Arnaud Proietti","doi":"10.1007/s00126-024-01346-4","DOIUrl":"https://doi.org/10.1007/s00126-024-01346-4","url":null,"abstract":"<p>In a gold deposit near Nassara, southern Burkina Faso, gold occurs closely associated with pyrite within a network of veins hosted by metavolcanic and metasedimentary rocks. Using SEM and LA-ICP-MS analyses, we identified three generations of pyrite with distinct roles in gold mineralization. Pyrite 1 (Py1) formed early during mineralization, replacing alteration minerals like ankerite in metabasalt. Pyrite 2 (Py2) developed around Py1 in pressure shadows caused by localized micro-shear zone reactivation during successive micro-seismic events. Pyrite 2 is enriched in As and Au, unlike Py1. Pyrite 3 (Py3), unrelated to mineralization, formed at a later stage. Gold occurs in pyrite as micro-inclusions (in Py1 and Py2), fracture-fillings (mainly in Py2), and within the pyrite structure as invisible gold, including nanoparticles (predominantly in Py2). Combining electron backscatter diffraction (EBSD) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis reveals that deformation-induced misorientation of pyrite facilitated the remobilization of invisible gold, which subsequently re-precipitated as colloidal particles along sub-grain boundaries and within fractures, mimicking visible inclusions. These findings demonstrate that gold perceived as inclusions (visible or invisible) often precipitates within micro/nano-fissures and sub-grain boundaries during remobilization. This highlights the critical importance of thorough ore characterization for accurately determining gold deportment. Such insights advance our understanding of mineralization processes and support the development of more efficient recovery strategies.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"32 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled antimony and sulfur isotopic composition of stibnite as a window to the origin of Sb mineralization in epithermal systems (examples from the Kremnica and Zlatá Baňa deposits, Slovakia)
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-26 DOI: 10.1007/s00126-024-01333-9
Peter Koděra, Ryan Mathur, Degao Zhai, Rastislav Milovský, Pavel Bačo, Juraj Majzlan

Stibnite is a relatively common mineral in epithermal deposits, with little known about Sb transport and efficient stibnite precipitation. The famous Kremnica Au-Ag low-sulfidation deposit and Zlatá Baňa intermediate-sulfidation Pb-Zn-Cu-Au-Ag-Sb deposit are hosted in two different Neogene volcanic fields in Western Carpathians, Slovakia. In both deposits, stibnite-rich veins occur outside of major vein structures, accompanied by illite, illite/smectite, and kaolinite alteration, and affiliated to late-stage fluids (< 2 wt% NaCl eq., < 150 °C). Sulfur isotopic composition of stibnite and sulfides is different at both deposits, likely due to a different magmatic-hydrothermal evolution of the parental magmatic chambers in the Central and Eastern Slovak Volcanic Fields. The Sb isotopes (δ123Sb), however, show similar values and trends of gradual simultaneous increase with δ34S values, explained by a progressive precipitation of stibnite and its fractionation with the fluid. The data were modeled by two coupled Rayleigh fractionation models, (for Sb and for S), assuming a predominant Sb transport in HSb2S4 with a variable amount of S species. Higher molality ratio mS/mSb of fluids was found in Kremnica (~ 3–4) than in Zlatá Baňa (~ 2). At both deposits, the heaviest δ123Sb values are accompanied by a decrease in the δ34S values probably due to the commencement of pyrite/marcasite precipitation. According to thermodynamic models of solubility of Sb(III) complexes and observations from active geothermal fields, stibnite precipitation was triggered by temperature decrease accompanied by mixing with a mildly acidic fluid (pH 4–5) of a steam-heated CO2-rich condensate on margins and in the final stages of epithermal systems. The proposed model for the origin of stibnite-bearing veins in epithermal systems can be used for their better targeting and efficient mineral exploration.

{"title":"Coupled antimony and sulfur isotopic composition of stibnite as a window to the origin of Sb mineralization in epithermal systems (examples from the Kremnica and Zlatá Baňa deposits, Slovakia)","authors":"Peter Koděra, Ryan Mathur, Degao Zhai, Rastislav Milovský, Pavel Bačo, Juraj Majzlan","doi":"10.1007/s00126-024-01333-9","DOIUrl":"https://doi.org/10.1007/s00126-024-01333-9","url":null,"abstract":"<p>Stibnite is a relatively common mineral in epithermal deposits, with little known about Sb transport and efficient stibnite precipitation. The famous Kremnica Au-Ag low-sulfidation deposit and Zlatá Baňa intermediate-sulfidation Pb-Zn-Cu-Au-Ag-Sb deposit are hosted in two different Neogene volcanic fields in Western Carpathians, Slovakia. In both deposits, stibnite-rich veins occur outside of major vein structures, accompanied by illite, illite/smectite, and kaolinite alteration, and affiliated to late-stage fluids (&lt; 2 wt% NaCl eq., &lt; 150 °C). Sulfur isotopic composition of stibnite and sulfides is different at both deposits, likely due to a different magmatic-hydrothermal evolution of the parental magmatic chambers in the Central and Eastern Slovak Volcanic Fields. The Sb isotopes (δ<sup>123</sup>Sb), however, show similar values and trends of gradual simultaneous increase with δ<sup>34</sup>S values, explained by a progressive precipitation of stibnite and its fractionation with the fluid. The data were modeled by two coupled Rayleigh fractionation models, (for Sb and for S), assuming a predominant Sb transport in HSb<sub>2</sub>S<sub>4</sub><sup>–</sup> with a variable amount of S species. Higher molality ratio m<sub>S</sub>/m<sub>Sb</sub> of fluids was found in Kremnica (~ 3–4) than in Zlatá Baňa (~ 2). At both deposits, the heaviest δ<sup>123</sup>Sb values are accompanied by a decrease in the δ<sup>34</sup>S values probably due to the commencement of pyrite/marcasite precipitation. According to thermodynamic models of solubility of Sb(III) complexes and observations from active geothermal fields, stibnite precipitation was triggered by temperature decrease accompanied by mixing with a mildly acidic fluid (pH 4–5) of a steam-heated CO<sub>2</sub>-rich condensate on margins and in the final stages of epithermal systems. The proposed model for the origin of stibnite-bearing veins in epithermal systems can be used for their better targeting and efficient mineral exploration.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"20 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using coupled bulk-rock geochemistry and short-wave infrared (SWIR) spectral reflectance data as rapid exploration tools in metamorphosed VHMS deposits: insights from the King Zn deposit, Yilgarn Craton, Western Australia 将大块岩石地球化学和短波红外(SWIR)光谱反射数据耦合用作变质超高分子量矿床的快速勘探工具:西澳大利亚伊尔加恩克拉通国王锌矿床的启示
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s00126-024-01342-8
Cendi D. P. Dana, Steven P. Hollis, Darryl Podmore, Megan James, Riquan Azri

Bulk rock geochemistry and SWIR reflectance spectroscopy are widely used by companies for rapid and cost-effective exploration of volcanic-hosted massive sulfide (VHMS) deposits. However, few studies have integrated bulk-rock geochemistry with hyperspectral reflectance spectroscopy in greenstone belts that have undergone high-grade metamorphism. Here we present an extensive dataset combining bulk-rock geochemistry with chlorite and white mica SWIR spectral reflectance from the amphibolite-grade King VHMS deposit of the Yilgarn Craton, Western Australia. At King, the footwall stratigraphy is dominated by tholeiitic mafic rocks overlain by a sequence of calc-alkaline intermediate-felsic metavolcanic rocks. The hanging-wall stratigraphy is characterized by a thin metaexhalite layer, overlain by thick succession of interbedded metasedimentary and metavolcanic rocks. Chlorite spectral signatures are more Fe-rich in mafic lithologies and Mg-rich in felsic rocks, particularly where intense Mg-metasomatism occurred before metamorphism. In all units, Fe/Mg ratios of chlorite are strongly tied to bulk rock Fe/Mg ratios. White mica in the footwall is primarily muscovitic, with minor amounts of phengite in deep Fe-rich mafic rocks. By contrast, the hanging-wall sequence is dominated by phengitic signatures in both the Fe-rich metaexhalite, and weakly Ca-Mg altered volcanic rocks. This study concludes that chlorite SWIR reflectance is largely influenced by the bulk Fe/Mg composition of the host rock, whereas white mica reflectance correlates with the type and intensity of hydrothermal alteration prior to metamorphism. These findings underscore the potential of using chlorite and white mica spectral signatures to understand hydrothermal alteration patterns and detect new orebodies in metamorphosed VHMS systems.

{"title":"Using coupled bulk-rock geochemistry and short-wave infrared (SWIR) spectral reflectance data as rapid exploration tools in metamorphosed VHMS deposits: insights from the King Zn deposit, Yilgarn Craton, Western Australia","authors":"Cendi D. P. Dana, Steven P. Hollis, Darryl Podmore, Megan James, Riquan Azri","doi":"10.1007/s00126-024-01342-8","DOIUrl":"https://doi.org/10.1007/s00126-024-01342-8","url":null,"abstract":"<p>Bulk rock geochemistry and SWIR reflectance spectroscopy are widely used by companies for rapid and cost-effective exploration of volcanic-hosted massive sulfide (VHMS) deposits. However, few studies have integrated bulk-rock geochemistry with hyperspectral reflectance spectroscopy in greenstone belts that have undergone high-grade metamorphism. Here we present an extensive dataset combining bulk-rock geochemistry with chlorite and white mica SWIR spectral reflectance from the amphibolite-grade King VHMS deposit of the Yilgarn Craton, Western Australia. At King, the footwall stratigraphy is dominated by tholeiitic mafic rocks overlain by a sequence of calc-alkaline intermediate-felsic metavolcanic rocks. The hanging-wall stratigraphy is characterized by a thin metaexhalite layer, overlain by thick succession of interbedded metasedimentary and metavolcanic rocks. Chlorite spectral signatures are more Fe-rich in mafic lithologies and Mg-rich in felsic rocks, particularly where intense Mg-metasomatism occurred before metamorphism. In all units, Fe/Mg ratios of chlorite are strongly tied to bulk rock Fe/Mg ratios. White mica in the footwall is primarily muscovitic, with minor amounts of phengite in deep Fe-rich mafic rocks. By contrast, the hanging-wall sequence is dominated by phengitic signatures in both the Fe-rich metaexhalite, and weakly Ca-Mg altered volcanic rocks. This study concludes that chlorite SWIR reflectance is largely influenced by the bulk Fe/Mg composition of the host rock, whereas white mica reflectance correlates with the type and intensity of hydrothermal alteration prior to metamorphism. These findings underscore the potential of using chlorite and white mica spectral signatures to understand hydrothermal alteration patterns and detect new orebodies in metamorphosed VHMS systems.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"41 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of the giant Devonian Daxigou sedimentary siderite deposit, Central China 中国中部泥盆纪大溪沟沉积菱铁矿床的起源
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-16 DOI: 10.1007/s00126-024-01336-6
Yuanjun Jonathan Lyu, Mei-Fu Zhou, Rui-Zhong Hu, Zerui Ray Liu, Yanfeng Zhao

Sedimentary Fe deposits are both scientifically and economically important. As a major ore mineral of these deposits, siderite is generally assumed to have been formed via diagenetic transformation of other Fe-bearing minerals. The Devonian Daxigou sedimentary siderite deposit, Central China, contains ca. 500 Mt Fe with an average ore grade of ca. 30 wt% FeOT but is poorly known in the literature. Different from most sedimentary Fe deposits that contain multiple generations of Fe-bearing minerals, the ore mineral in this deposit is solely siderite, and thus may provide valuable information about the processes of siderite mineralization. Stratiform orebodies of the Daxigou deposit are hosted in a turbidite sequence formed in the Devonian Zhashui-Shanyang intraplate rift basin. Orebodies are composed of interbedded ore and mudstone layers. The ore mineral is siderite and gangue minerals are quartz and clay minerals (mainly muscovite and illite). Siderite has shale-normalized REE+Y patterns with positive Eu anomalies (Eu/Eu*PAAS = 1.19–1.59) and low Y/Ho ratios (Y/Ho = 27.5–32.6) indicative of involvement of seafloor hydrothermal fluids. Siderite separates have εNd(t) values from − 9.9 to -8.9, suggesting that Fe was leached from underlying clastic rocks. Siderite has δ13CPDB values from − 3.45 to -1.09‰ and δ56FeIRMM014 values from − 0.72‰ to -0.27‰, with only limited fractionations relative to dissolved inorganic carbon in seawaters and to hydrothermally derived Fe2+. High resolution transmission electron microscopic images reveal that siderite grains were nucleated on the surface of clay minerals. Thus, we conclude that siderite of the Daxigou deposit was precipitated directly from ferruginous seawaters via heterogeneous nucleation on clay minerals at elevated temperatures, instead of formation through diagenetic transformation from other Fe-bearing minerals. The Daxigou deposit can be considered as a unique primary sedimentary siderite deposit. It was formed under an extensional regime of the South China Craton during the breakup of Gondwana. Our study provides new insights about the mineralization pathways of sedimentary Fe deposits in the geological past.

{"title":"Origin of the giant Devonian Daxigou sedimentary siderite deposit, Central China","authors":"Yuanjun Jonathan Lyu, Mei-Fu Zhou, Rui-Zhong Hu, Zerui Ray Liu, Yanfeng Zhao","doi":"10.1007/s00126-024-01336-6","DOIUrl":"https://doi.org/10.1007/s00126-024-01336-6","url":null,"abstract":"<p>Sedimentary Fe deposits are both scientifically and economically important. As a major ore mineral of these deposits, siderite is generally assumed to have been formed via diagenetic transformation of other Fe-bearing minerals. The Devonian Daxigou sedimentary siderite deposit, Central China, contains ca. 500 Mt Fe with an average ore grade of ca. 30 wt% FeO<sup>T</sup> but is poorly known in the literature. Different from most sedimentary Fe deposits that contain multiple generations of Fe-bearing minerals, the ore mineral in this deposit is solely siderite, and thus may provide valuable information about the processes of siderite mineralization. Stratiform orebodies of the Daxigou deposit are hosted in a turbidite sequence formed in the Devonian Zhashui-Shanyang intraplate rift basin. Orebodies are composed of interbedded ore and mudstone layers. The ore mineral is siderite and gangue minerals are quartz and clay minerals (mainly muscovite and illite). Siderite has shale-normalized REE+Y patterns with positive Eu anomalies (Eu/Eu*<sub>PAAS</sub> = 1.19–1.59) and low Y/Ho ratios (Y/Ho = 27.5–32.6) indicative of involvement of seafloor hydrothermal fluids. Siderite separates have εNd<sub>(t)</sub> values from − 9.9 to -8.9, suggesting that Fe was leached from underlying clastic rocks. Siderite has δ<sup>13</sup>C<sub>PDB</sub> values from − 3.45 to -1.09‰ and δ<sup>56</sup>Fe<sub>IRMM014</sub> values from − 0.72‰ to -0.27‰, with only limited fractionations relative to dissolved inorganic carbon in seawaters and to hydrothermally derived Fe<sup>2+</sup>. High resolution transmission electron microscopic images reveal that siderite grains were nucleated on the surface of clay minerals. Thus, we conclude that siderite of the Daxigou deposit was precipitated directly from ferruginous seawaters via heterogeneous nucleation on clay minerals at elevated temperatures, instead of formation through diagenetic transformation from other Fe-bearing minerals. The Daxigou deposit can be considered as a unique primary sedimentary siderite deposit. It was formed under an extensional regime of the South China Craton during the breakup of Gondwana. Our study provides new insights about the mineralization pathways of sedimentary Fe deposits in the geological past.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"47 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age and genesis of hydrothermal Ni-PGE-Te mineralisation in the Gondpipri mafic–ultramafic complex, central India: constraints from zircon U–Pb geochronology and magnetite-pyrite geochemistry
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-13 DOI: 10.1007/s00126-024-01338-4
Muduru L. Dora, Dewashish Upadhyay, Srinivas R. Baswani, Tushar Meshram, Mrinal Kanti Mukherjee, Satya Narayan Mahapatro, Kirtikumar Randive

The Gondpipri layered mafic–ultramafic intrusion at the western margin of the Bastar Craton in Central Indiacomprises leucogabbro, gabbronorite, and websterite. The intrusion hosts both magmatic and hydrothermal Ni-platinum group element (PGE)mineralisation. In this study, we use in-situ measured trace element composition of pyrite and magnetite and zircon U–Pb geochronology to elucidate hydrothermal processes and their timing. Secondary platinum group minerals (PGMs) occur as veins and fracture fillings in sulfide and oxide minerals together with hydrothermal zircon clusters within chlorite alteration. Electron microprobe (EPMA) analysis reveals that magmatic PGMs are enriched in Pt, Pd, and Rh, whereas the hydrothermal PGMs are characterized by higher Fe, S, Te, Bi, and Ni. A semi-metal collector model (Bi-Te) is proposed for PGE in the Heti Ni-PGE prospect, where an immiscible Bi-Te melt exsolves and acts as a collector for formation of primary PGM following precipitation of Pd tellurides, tsumoite, melonite and hessite upon cooling of temperature hydrothermal fluids. Two generations of pyrite (Py-I and Py-II) and magnetite (Mag-I and Mag-II) are identified. Py-I and Py-II exhibit distinctive concentrations of Co, Se, and Au, while Mag-I and Mag-II have variable concentrations of REEs, Cr, Ti, Ga, V, Ba, and Sr. Selenium geothermometry of pyrite indicates that hydrothermal mineralisation occurred within a temperature range of 200 °C to 475 °C. The Ni-PGM-Bi-Te mineralisation is associated with an unusual cluster of megacrystic zircons, which are likely hydrothermal origin. Uranium-lead (U–Pb) dating of five zircons using LA-ICPMS yields a concordia age of 2524 ± 7 Ma, interpreted as the age of the hydrothermal sulfide-hosted Ni-Te-Bi-PGE mineralization.

{"title":"Age and genesis of hydrothermal Ni-PGE-Te mineralisation in the Gondpipri mafic–ultramafic complex, central India: constraints from zircon U–Pb geochronology and magnetite-pyrite geochemistry","authors":"Muduru L. Dora, Dewashish Upadhyay, Srinivas R. Baswani, Tushar Meshram, Mrinal Kanti Mukherjee, Satya Narayan Mahapatro, Kirtikumar Randive","doi":"10.1007/s00126-024-01338-4","DOIUrl":"https://doi.org/10.1007/s00126-024-01338-4","url":null,"abstract":"<p>The Gondpipri layered mafic–ultramafic intrusion at the western margin of the Bastar Craton in Central Indiacomprises leucogabbro, gabbronorite, and websterite. The intrusion hosts both magmatic and hydrothermal Ni-platinum group element (PGE)mineralisation. In this study, we use <i>in-situ</i> measured trace element composition of pyrite and magnetite and zircon U–Pb geochronology to elucidate hydrothermal processes and their timing. Secondary platinum group minerals (PGMs) occur as veins and fracture fillings in sulfide and oxide minerals together with hydrothermal zircon clusters within chlorite alteration. Electron microprobe (EPMA) analysis reveals that magmatic PGMs are enriched in Pt, Pd, and Rh, whereas the hydrothermal PGMs are characterized by higher Fe, S, Te, Bi, and Ni. A semi-metal collector model (Bi-Te) is proposed for PGE in the Heti Ni-PGE prospect, where an immiscible Bi-Te melt exsolves and acts as a collector for formation of primary PGM following precipitation of Pd tellurides, tsumoite, melonite and hessite upon cooling of temperature hydrothermal fluids. Two generations of pyrite (Py-I and Py-II) and magnetite (Mag-I and Mag-II) are identified. Py-I and Py-II exhibit distinctive concentrations of Co, Se, and Au, while Mag-I and Mag-II have variable concentrations of REEs, Cr, Ti, Ga, V, Ba, and Sr. Selenium geothermometry of pyrite indicates that hydrothermal mineralisation occurred within a temperature range of 200 °C to 475 °C. The Ni-PGM-Bi-Te mineralisation is associated with an unusual cluster of megacrystic zircons, which are likely hydrothermal origin. Uranium-lead (U–Pb) dating of five zircons using LA-ICPMS yields a concordia age of 2524 ± 7 Ma, interpreted as the age of the hydrothermal sulfide-hosted Ni-Te-Bi-PGE mineralization.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"41 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Slab-derived fluids as a crucial factor for the metallogeny of porphyry deposits in the Yidun arc, SW China
IF 4.8 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-11 DOI: 10.1007/s00126-024-01340-w
Zhendong Tian, Bernd Lehmann, Chengbiao Leng, Changzhou Deng, Lingjian Gao, Xingchun Zhang, Anbo Luo, Di Chen, Runsheng Yin
{"title":"Correction to: Slab-derived fluids as a crucial factor for the metallogeny of porphyry deposits in the Yidun arc, SW China","authors":"Zhendong Tian, Bernd Lehmann, Chengbiao Leng, Changzhou Deng, Lingjian Gao, Xingchun Zhang, Anbo Luo, Di Chen, Runsheng Yin","doi":"10.1007/s00126-024-01340-w","DOIUrl":"https://doi.org/10.1007/s00126-024-01340-w","url":null,"abstract":"","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"200 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mineralium Deposita
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1