Feasibility of deep learning to predict tinnitus patient outcomes

Katherine S. Adcock , Gabriel Byczynski , Emma Meade , Sook Ling Leong , Richard Gault , Hubert Lim , Sven Vanneste
{"title":"Feasibility of deep learning to predict tinnitus patient outcomes","authors":"Katherine S. Adcock ,&nbsp;Gabriel Byczynski ,&nbsp;Emma Meade ,&nbsp;Sook Ling Leong ,&nbsp;Richard Gault ,&nbsp;Hubert Lim ,&nbsp;Sven Vanneste","doi":"10.1016/j.ibmed.2024.100141","DOIUrl":null,"url":null,"abstract":"<div><p>Advances in machine and deep learning techniques provide a novel approach in understanding complex patterns within large datasets, leading to an implementation of personalized medicine approaches to support clinical decision making. Results from recent clinical trials (TENT-A1 and TENT-A2 studies; clinicaltrials.gov: <span>NCT02669069</span><svg><path></path></svg> and <span>NCT03530306</span><svg><path></path></svg>) support that a novel bimodal neuromodulation approach could be a breakthrough treatment for patients with tinnitus, which adversely affects 10–15 % of the population. Given the heterogeneity of symptoms, it is important to identify whether treatment has an optimal effect on specific subgroups of tinnitus patients. The current study is a first look at the feasibility of using deep learning modelling on patient reported data to predict treatment outcomes in individuals with tinnitus, and highlights what features are most beneficial for clinical decision making.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"9 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000085/pdfft?md5=be723d4e20025718809aab06a9a42aa7&pid=1-s2.0-S2666521224000085-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in machine and deep learning techniques provide a novel approach in understanding complex patterns within large datasets, leading to an implementation of personalized medicine approaches to support clinical decision making. Results from recent clinical trials (TENT-A1 and TENT-A2 studies; clinicaltrials.gov: NCT02669069 and NCT03530306) support that a novel bimodal neuromodulation approach could be a breakthrough treatment for patients with tinnitus, which adversely affects 10–15 % of the population. Given the heterogeneity of symptoms, it is important to identify whether treatment has an optimal effect on specific subgroups of tinnitus patients. The current study is a first look at the feasibility of using deep learning modelling on patient reported data to predict treatment outcomes in individuals with tinnitus, and highlights what features are most beneficial for clinical decision making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习预测耳鸣患者预后的可行性
机器学习和深度学习技术的进步为理解大型数据集中的复杂模式提供了一种新方法,从而实现了支持临床决策的个性化医疗方法。最近的临床试验(TENT-A1 和 TENT-A2 研究;clinicaltrials.gov:NCT02669069和NCT03530306)的结果表明,新型双模神经调控方法可能成为治疗耳鸣患者的突破性方法,耳鸣对10-15%的人口造成了不良影响。鉴于症状的异质性,确定治疗是否对特定的耳鸣患者亚群有最佳效果非常重要。目前的研究首次探讨了在患者报告数据上使用深度学习建模预测耳鸣患者治疗效果的可行性,并强调了哪些特征最有利于临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1