The application of carbonate and sediment budgets to assess the stability of marginal reef systems

IF 2.6 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Marine Geology Pub Date : 2024-05-23 DOI:10.1016/j.margeo.2024.107324
Shannon Dee , Adi Zweifler , Michael Cuttler , Jake Nilsen , Joshua Bonesso , Michael O'Leary , Nicola K. Browne
{"title":"The application of carbonate and sediment budgets to assess the stability of marginal reef systems","authors":"Shannon Dee ,&nbsp;Adi Zweifler ,&nbsp;Michael Cuttler ,&nbsp;Jake Nilsen ,&nbsp;Joshua Bonesso ,&nbsp;Michael O'Leary ,&nbsp;Nicola K. Browne","doi":"10.1016/j.margeo.2024.107324","DOIUrl":null,"url":null,"abstract":"<div><p>Coral reefs and their associated landforms (carbonate islands and shorelines) are under increasing threat from the effects of anthropogenic climate change, including sea level rise (SLR). The ability of a reef to keep up with SLR depends on the rate of calcium carbonate accretion. Census-based carbonate budgets quantify rates of net calcium carbonate production on a reef and facilitate estimations of vertical reef accretion potential (RAP). To date, most carbonate budget studies have been undertaken in clear-water settings resulting in a limited understanding of how inshore reefs situated in more marginal environmental settings are functioning now and under future climate change. Here, we applied census-based carbonate framework across two inshore island reefs exposed to episodes of high turbidity within the Pilbara, Western Australia. Low net carbonate production (mean = 1.11 and 0.62 kg m<sup>−2</sup> yr<sup>−1</sup>) was predominantly driven by low coral cover (&lt;10%) and low calcification rates. Importantly, bioerosion rates were also low (&lt;0.1 kg m<sup>−2</sup> yr<sup>−1</sup>), maintaining positive carbonate budgetary states. Net sediment production rates were also low (mean = 0.06 kg m<sup>−2</sup> yr<sup>−1</sup>) and were found to be mostly derived from coral, or mollusc material produced by invertivores. Calculated RAP estimates are below current and predicted rates of SLR, suggesting that these turbid reefs will soon struggle to keep up with increasing water depth and shoreline inundation.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"473 ","pages":"Article 107324"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025322724001087/pdfft?md5=6b7600dcbf7ba6008d02588b3c43b689&pid=1-s2.0-S0025322724001087-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001087","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Coral reefs and their associated landforms (carbonate islands and shorelines) are under increasing threat from the effects of anthropogenic climate change, including sea level rise (SLR). The ability of a reef to keep up with SLR depends on the rate of calcium carbonate accretion. Census-based carbonate budgets quantify rates of net calcium carbonate production on a reef and facilitate estimations of vertical reef accretion potential (RAP). To date, most carbonate budget studies have been undertaken in clear-water settings resulting in a limited understanding of how inshore reefs situated in more marginal environmental settings are functioning now and under future climate change. Here, we applied census-based carbonate framework across two inshore island reefs exposed to episodes of high turbidity within the Pilbara, Western Australia. Low net carbonate production (mean = 1.11 and 0.62 kg m−2 yr−1) was predominantly driven by low coral cover (<10%) and low calcification rates. Importantly, bioerosion rates were also low (<0.1 kg m−2 yr−1), maintaining positive carbonate budgetary states. Net sediment production rates were also low (mean = 0.06 kg m−2 yr−1) and were found to be mostly derived from coral, or mollusc material produced by invertivores. Calculated RAP estimates are below current and predicted rates of SLR, suggesting that these turbid reefs will soon struggle to keep up with increasing water depth and shoreline inundation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用碳酸盐和沉积物预算评估边缘珊瑚礁系统的稳定性
珊瑚礁及其相关地貌(碳酸盐岛屿和海岸线)正日益受到人为气候变化影响的威胁,包括海平面上升(SLR)。珊瑚礁能否跟上海平面上升的速度取决于碳酸钙的增殖速度。基于普查的碳酸盐预算可量化珊瑚礁上碳酸钙的净生产率,并有助于估算珊瑚礁的垂直增殖潜力(RAP)。迄今为止,大多数碳酸盐预算研究都是在清水环境中进行的,因此对位于更边缘环境中的近岸珊瑚礁现在和未来气候变化下的功能了解有限。在此,我们在西澳大利亚皮尔巴拉地区暴露于高浊度事件的两个近岸岛礁上应用了基于普查的碳酸盐框架。低净碳酸盐产量(平均 = 1.11 和 0.62 kg m-2 yr-1)主要是由低珊瑚覆盖率(<10%)和低钙化率造成的。重要的是,生物侵蚀率也很低(0.1 kg m-2 yr-1),从而维持了正的碳酸盐预算状态。沉积物的净生产率也很低(平均 = 0.06 kg m-2 yr-1),且主要来自珊瑚或无脊椎动物产生的软体物质。计算得出的 RAP 估计值低于当前和预测的可持续土地退化速率,这表明这些浑浊的珊瑚礁将很快难以跟上水深增加和海岸线淹没的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Geology
Marine Geology 地学-地球科学综合
CiteScore
6.10
自引率
6.90%
发文量
175
审稿时长
21.9 weeks
期刊介绍: Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.
期刊最新文献
Editorial Board Channel function shift around a recently-colonised estuarine mangrove shoal The eastward intrusion of the Lena River into the East Siberian Sea since the early Holocene Reduced bottom water oxygenation in the northern Indian Ocean during the Last Glacial Maximum Origin and critical metals enrichment of ferromanganese precipitates from Jiawang Seamount (Hook Ridge) Antarctica: Geochemistry and isotope evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1