Parameter identification of Yoshida–Uemori combined hardening model by using a variable step size firefly algorithm

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Testing Pub Date : 2024-05-24 DOI:10.1515/mt-2023-0351
Bora Şener
{"title":"Parameter identification of Yoshida–Uemori combined hardening model by using a variable step size firefly algorithm","authors":"Bora Şener","doi":"10.1515/mt-2023-0351","DOIUrl":null,"url":null,"abstract":"\n The material behavior under cyclic loading is more complex than under monotonic loading and the usage of the sophisticated constitutive models is required to accurately define the elastoplastic behaviors of the advanced high-strength steels and aluminum alloys. These models involve the numerous material parameters that are determined from cyclic tests and accurate calibration of the variables has a great influence on the description of the material response. Therefore, the development of a precise and robust identification method is needed to obtain reliable results. In this study, a systematic methodology depending upon the firefly algorithm (FA) with variable step size has been developed and Yoshida–Uemori combined hardening model parameters of a dual-phase steel (DP980) and an aluminum alloy (AA6XXX-T4) are determined. The identified parameters are verified based on comparisons between the finite element simulations of the cyclic uniaxial tension-compression tests and experimental data and also the search performance of the variable FA is evaluated by comparing it with the standard FA. It is seen from these comparisons that variable FA can easily find and rapidly converge to the global optimum solutions.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0351","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The material behavior under cyclic loading is more complex than under monotonic loading and the usage of the sophisticated constitutive models is required to accurately define the elastoplastic behaviors of the advanced high-strength steels and aluminum alloys. These models involve the numerous material parameters that are determined from cyclic tests and accurate calibration of the variables has a great influence on the description of the material response. Therefore, the development of a precise and robust identification method is needed to obtain reliable results. In this study, a systematic methodology depending upon the firefly algorithm (FA) with variable step size has been developed and Yoshida–Uemori combined hardening model parameters of a dual-phase steel (DP980) and an aluminum alloy (AA6XXX-T4) are determined. The identified parameters are verified based on comparisons between the finite element simulations of the cyclic uniaxial tension-compression tests and experimental data and also the search performance of the variable FA is evaluated by comparing it with the standard FA. It is seen from these comparisons that variable FA can easily find and rapidly converge to the global optimum solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用步长可变的萤火虫算法识别吉田-上森组合硬化模型的参数
与单调加载相比,循环加载下的材料行为更为复杂,因此需要使用复杂的构成模型来准确定义先进高强度钢和铝合金的弹塑性行为。这些模型涉及大量通过循环测试确定的材料参数,变量的精确校准对材料响应的描述有很大影响。因此,需要开发一种精确、稳健的识别方法,以获得可靠的结果。在本研究中,开发了一种基于萤火虫算法(FA)、步长可变的系统方法,并确定了双相钢(DP980)和铝合金(AA6XXX-T4)的 Yoshida-Uemori 组合硬化模型参数。根据循环单轴拉伸-压缩试验的有限元模拟与实验数据之间的比较,对确定的参数进行了验证,并通过与标准 FA 进行比较,对可变 FA 的搜索性能进行了评估。从这些比较中可以看出,变量 FA 可以轻松找到并快速收敛到全局最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
期刊最新文献
Enhancing the performance of a additive manufactured battery holder using a coupled artificial neural network with a hybrid flood algorithm and water wave algorithm Microstructural, mechanical and nondestructive characterization of X60 grade steel pipes welded by different processes Microstructural characteristics and mechanical properties of 3D printed Kevlar fibre reinforced Onyx composite Experimental investigations and material modeling of an elastomer jaw coupling Numerical analysis of cathodic protection of a Q355ND frame in a shallow water subsea Christmas tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1