A Systematic Literature Review on Using Natural Language Processing in Software Requirements Engineering

Sabina-Cristiana Necula, Florin Dumitriu, Valerică Greavu-Șerban
{"title":"A Systematic Literature Review on Using Natural Language Processing in Software Requirements Engineering","authors":"Sabina-Cristiana Necula, Florin Dumitriu, Valerică Greavu-Șerban","doi":"10.3390/electronics13112055","DOIUrl":null,"url":null,"abstract":"This systematic literature review examines the integration of natural language processing (NLP) in software requirements engineering (SRE) from 1991 to 2023. Focusing on the enhancement of software requirement processes through technological innovation, this study spans an extensive array of scholarly articles, conference papers, and key journal and conference reports, including data from Scopus, IEEE Xplore, ACM Digital Library, and Clarivate. Our methodology employs both quantitative bibliometric tools, like keyword trend analysis and thematic mapping, and qualitative content analysis to provide a robust synthesis of current trends and future directions. Reported findings underscore the essential roles of advanced computational techniques like machine learning, deep learning, and large language models in refining and automating SRE tasks. This review highlights the progressive adoption of these technologies in response to the increasing complexity of software systems, emphasizing their significant potential to enhance the accuracy and efficiency of requirement engineering practices while also pointing to the challenges of integrating artificial intelligence (AI) and NLP into existing SRE workflows. The systematic exploration of both historical contributions and emerging trends offers new insights into the dynamic interplay between technological advances and their practical applications in SRE.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"2 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13112055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic literature review examines the integration of natural language processing (NLP) in software requirements engineering (SRE) from 1991 to 2023. Focusing on the enhancement of software requirement processes through technological innovation, this study spans an extensive array of scholarly articles, conference papers, and key journal and conference reports, including data from Scopus, IEEE Xplore, ACM Digital Library, and Clarivate. Our methodology employs both quantitative bibliometric tools, like keyword trend analysis and thematic mapping, and qualitative content analysis to provide a robust synthesis of current trends and future directions. Reported findings underscore the essential roles of advanced computational techniques like machine learning, deep learning, and large language models in refining and automating SRE tasks. This review highlights the progressive adoption of these technologies in response to the increasing complexity of software systems, emphasizing their significant potential to enhance the accuracy and efficiency of requirement engineering practices while also pointing to the challenges of integrating artificial intelligence (AI) and NLP into existing SRE workflows. The systematic exploration of both historical contributions and emerging trends offers new insights into the dynamic interplay between technological advances and their practical applications in SRE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于在软件需求工程中使用自然语言处理的系统性文献综述
本系统性文献综述研究了从1991年到2023年软件需求工程(SRE)中自然语言处理(NLP)的整合情况。本研究侧重于通过技术创新改进软件需求流程,涵盖了大量学术论文、会议论文、重要期刊和会议报告,包括来自 Scopus、IEEE Xplore、ACM 数字图书馆和 Clarivate 的数据。我们的研究方法采用了定量文献计量工具(如关键词趋势分析和主题图谱)和定性内容分析,对当前趋势和未来方向进行了有力的综合分析。报告的研究结果强调了机器学习、深度学习和大型语言模型等先进计算技术在完善和自动化 SRE 任务中的重要作用。这篇综述强调了这些技术在应对软件系统日益复杂的情况下被逐步采用的情况,强调了它们在提高需求工程实践的准确性和效率方面的巨大潜力,同时也指出了将人工智能(AI)和 NLP 整合到现有 SRE 工作流程中所面临的挑战。对历史贡献和新兴趋势的系统探讨,为技术进步及其在 SRE 中的实际应用之间的动态相互作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting Compact Walsh–Hadamard Transform-Driven S-Box Design for ASIC Implementations RETRACTED: Liu et al. Ground Risk Estimation of Unmanned Aerial Vehicles Based on Probability Approximation for Impact Positions with Multi-Uncertainties. Electronics 2023, 12, 829 The Use of TheraBracelet Upper Extremity Vibrotactile Stimulation in a Child with Cerebral Palsy—A Case Report Image Databases with Features Augmented with Singular-Point Shapes to Enhance Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1