{"title":"Laplacian regularized motion tomography for underwater vehicle flow mapping with sporadic localization measurements","authors":"Ouerghi Meriam, Hou Mengxue, Zhang Fumin","doi":"10.1007/s10514-024-10165-5","DOIUrl":null,"url":null,"abstract":"<div><p>Localization measurements for an autonomous underwater vehicle (AUV) are often difficult to obtain. In many cases, localization measurements are only available sporadically after the AUV comes to the sea surface. Since the motion of AUVs is often affected by unknown underwater flow fields, the sporadic localization measurements carry information of the underwater flow field. Motion tomography (MT) algorithms have been developed to compute a underwater flow map based on the sporadic localization measurements. This paper extends MT by introducing Laplacian regularization in to the problem formulation and the MT algorithm. Laplacian regularization enforces smoothness in the spatial distribution of the underwater flow field. The resulted Laplacian regularized motion tomography (RMT) algorithm converges to achieve a finite error bounded. The performance of the RMT and other variants of MT are compared through the method of data resolution analysis. The improved performance of RMT is confirmed by experimental data collected from underwater glider ocean sensing experiments.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 4-5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10165-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Localization measurements for an autonomous underwater vehicle (AUV) are often difficult to obtain. In many cases, localization measurements are only available sporadically after the AUV comes to the sea surface. Since the motion of AUVs is often affected by unknown underwater flow fields, the sporadic localization measurements carry information of the underwater flow field. Motion tomography (MT) algorithms have been developed to compute a underwater flow map based on the sporadic localization measurements. This paper extends MT by introducing Laplacian regularization in to the problem formulation and the MT algorithm. Laplacian regularization enforces smoothness in the spatial distribution of the underwater flow field. The resulted Laplacian regularized motion tomography (RMT) algorithm converges to achieve a finite error bounded. The performance of the RMT and other variants of MT are compared through the method of data resolution analysis. The improved performance of RMT is confirmed by experimental data collected from underwater glider ocean sensing experiments.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.