Developing a Design Guideline of Boronic Acid Derivatives to Scavenge Targeted Sugars in the Formose Reaction Products using DFT-based Machine Learning

IF 1.4 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Chemistry Letters Pub Date : 2024-05-23 DOI:10.1093/chemle/upae087
Nanako Ishihara, Genta Chikatani, Hiroaki Nishijima, Hiro Tabata, Yoko Hase, Y. Mukouyama, Shuji Nakanishi, Shiho Mukaida
{"title":"Developing a Design Guideline of Boronic Acid Derivatives to Scavenge Targeted Sugars in the Formose Reaction Products using DFT-based Machine Learning","authors":"Nanako Ishihara, Genta Chikatani, Hiroaki Nishijima, Hiro Tabata, Yoko Hase, Y. Mukouyama, Shuji Nakanishi, Shiho Mukaida","doi":"10.1093/chemle/upae087","DOIUrl":null,"url":null,"abstract":"\n Formose reaction facilitates the synthesis of sugars from HCHO, yet the valuable sugars constitute only a small portion of the total products. This necessitates the need for a chemical scavenger capable of selectively capturing only valuable sugars. With over 600,000 potential combinations of boronic acid-based scavengers available, pursuing a deductive search approach is unfeasible. This study aims to derive guidelines for designing scavengers that readily bind with target sugars while avoiding non-target ones, via machine learning informed by DFT calculations.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae087","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Formose reaction facilitates the synthesis of sugars from HCHO, yet the valuable sugars constitute only a small portion of the total products. This necessitates the need for a chemical scavenger capable of selectively capturing only valuable sugars. With over 600,000 potential combinations of boronic acid-based scavengers available, pursuing a deductive search approach is unfeasible. This study aims to derive guidelines for designing scavengers that readily bind with target sugars while avoiding non-target ones, via machine learning informed by DFT calculations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 DFT 的机器学习开发硼酸衍生物设计指南,以清除福尔摩斯反应产物中的目标糖分
福尔摩斯反应有助于从 HCHO 中合成糖类,但有价值的糖类只占总产物的一小部分。因此需要一种化学清除剂,能够有选择性地只捕捉有价值的糖。目前有超过 600,000 种潜在的硼酸基清除剂组合可供选择,因此采用演绎式搜索方法是不可行的。本研究旨在通过机器学习和 DFT 计算,得出设计清除剂的指导原则,使清除剂既能与目标糖结合,又能避开非目标糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry Letters
Chemistry Letters 化学-化学综合
CiteScore
3.00
自引率
6.20%
发文量
260
审稿时长
1.2 months
期刊介绍: Chemistry Letters covers the following topics: -Organic Chemistry- Physical Chemistry- Inorganic Chemistry- Analytical Chemistry- Materials Chemistry- Polymer Chemistry- Supramolecular Chemistry- Organometallic Chemistry- Coordination Chemistry- Biomolecular Chemistry- Natural Products and Medicinal Chemistry- Electrochemistry
期刊最新文献
Tin Oxides as a Negative Electrode Material for Mg-Ion Batteries Chemometrics-assisted functionalization of boronic acid-derived supramolecules Regulating oxidation states of Cu nanowires for enhanced catalytic reduction of 4-nitrophenol Preliminary studies on ion-pair extractions of Zr, Hf, Nb, and Ta using extractants having tertiary N atom from H2SO4 and HF Neural Network Potential Calculations for Melamine Adsorption onto Pt (111) Comparing with Density Functional Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1