Carbon Dioxide Capturing in Temperature/Pressure Swing-Commercial Processes Using Ionic Liquids

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-05-23 DOI:10.1002/ceat.202300497
Prof. Dr. Sami-ullah Rather, Dr. Aqeel Ahmad Taimoor, Dr. Usman Saeed, Dr. Muhammad Ehtisham Siddiqui, Prof. Dr. Hisham S. Bamufleh
{"title":"Carbon Dioxide Capturing in Temperature/Pressure Swing-Commercial Processes Using Ionic Liquids","authors":"Prof. Dr. Sami-ullah Rather,&nbsp;Dr. Aqeel Ahmad Taimoor,&nbsp;Dr. Usman Saeed,&nbsp;Dr. Muhammad Ehtisham Siddiqui,&nbsp;Prof. Dr. Hisham S. Bamufleh","doi":"10.1002/ceat.202300497","DOIUrl":null,"url":null,"abstract":"<p>Capturing carbon dioxide is vital for mitigating global warming and supporting chemical processes. Ionic liquids (ILs) have emerged as promising solvents for CO<sub>2</sub> capture. Using ASPEN simulation software, this study explores three specific ILs: [emim][triflate], [bmim][MeSO<sub>3</sub>], and [bmim][NTf<sub>2</sub>]. Their selection is based on exploitable differences in energy. The study models CO<sub>2</sub> solubility and validates it against published data. It also considers the decomposition of ILs using a more accurate vapor loss model. Simulated equations predict CO<sub>2</sub> and IL behavior more accurately than published ASPEN studies, optimizing the process for minimal energy consumption. Commercial considerations and rigorous engineering calculations guide the analysis, encompassing energy and economic factors.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 8","pages":"1097-1113"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300497","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing carbon dioxide is vital for mitigating global warming and supporting chemical processes. Ionic liquids (ILs) have emerged as promising solvents for CO2 capture. Using ASPEN simulation software, this study explores three specific ILs: [emim][triflate], [bmim][MeSO3], and [bmim][NTf2]. Their selection is based on exploitable differences in energy. The study models CO2 solubility and validates it against published data. It also considers the decomposition of ILs using a more accurate vapor loss model. Simulated equations predict CO2 and IL behavior more accurately than published ASPEN studies, optimizing the process for minimal energy consumption. Commercial considerations and rigorous engineering calculations guide the analysis, encompassing energy and economic factors.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离子液体在变温/变压商业工艺中捕获二氧化碳
捕获二氧化碳对于缓解全球变暖和支持化学工艺至关重要。离子液体 (IL) 已成为二氧化碳捕集的理想溶剂。本研究使用 ASPEN 模拟软件,探索了三种特定的离子液体:[emim][triflate]、[bmim][MeSO3]和[bmim][NTf2]。它们的选择基于可利用的能量差异。研究建立了二氧化碳溶解度模型,并根据已公布的数据进行了验证。研究还考虑了使用更精确的蒸汽损失模型来分解 IL 的问题。与已发表的 ASPEN 研究相比,模拟方程能更准确地预测 CO2 和 IL 的行为,从而优化工艺,实现最低能耗。商业考虑因素和严格的工程计算为分析提供了指导,其中包括能源和经济因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 1/2025 Editorial Board: Chem. Eng. Technol. 1/2025 Overview Contents: Chem. Eng. Technol. 1/2025 Bubble Plume Behavior and Turbulence Characteristics of Gas–Liquid Phase in Power-Law Fluids Development of a Self-Pressurized Polymer Electrolyte Membrane Electrolyzer for Hydrogen Production at High Pressures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1