{"title":"Scientific Discovery at the Press of a Button: Navigating Emerging Cloud Laboratory Technology","authors":"D. Sebastian Arias, Rebecca E. Taylor","doi":"10.1002/admt.202400084","DOIUrl":null,"url":null,"abstract":"<p>The “cloud lab,” an automated laboratory that allows researchers to program and conduct physical experiments remotely, represents a paradigm shift in scientific practice. This shift from wet-lab research as a primarily manual enterprise to one more akin to programming bears incredible promise by democratizing a completely new level of automation and its advantages to the scientific community. Moreover, they provide a foundation on which automated science driven by artificial intelligence (A.I.) can be built upon and thereby resolve limitations in scope and accessibility that current systems face. With a focus on DNA nanotechnology, the authors have had the opportunity to explore and apply the cloud lab to active research. This perspective delves into the future potential of cloud labs in accelerating scientific research and broadening access to automation. The challenges associated with the technology in its current state are further explored, including difficulties in experimental troubleshooting, the limited applicability of its parallelization in an academic setting, as well as the potential reduction in experimental flexibility associated with the approach.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400084","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The “cloud lab,” an automated laboratory that allows researchers to program and conduct physical experiments remotely, represents a paradigm shift in scientific practice. This shift from wet-lab research as a primarily manual enterprise to one more akin to programming bears incredible promise by democratizing a completely new level of automation and its advantages to the scientific community. Moreover, they provide a foundation on which automated science driven by artificial intelligence (A.I.) can be built upon and thereby resolve limitations in scope and accessibility that current systems face. With a focus on DNA nanotechnology, the authors have had the opportunity to explore and apply the cloud lab to active research. This perspective delves into the future potential of cloud labs in accelerating scientific research and broadening access to automation. The challenges associated with the technology in its current state are further explored, including difficulties in experimental troubleshooting, the limited applicability of its parallelization in an academic setting, as well as the potential reduction in experimental flexibility associated with the approach.
云实验室 "是一种允许研究人员远程编程和进行物理实验的自动化实验室,它代表了科学实践的范式转变。湿实验室研究主要是手工操作,而云实验室则更类似于编程,这种转变为科学界带来了全新水平的自动化及其优势,前景令人难以置信。此外,它们还为人工智能(A.I.)驱动的自动化科学奠定了基础,从而解决了当前系统在范围和可访问性方面面临的限制。以 DNA 纳米技术为重点,作者有机会探索云实验室并将其应用于活跃的研究中。本视角深入探讨了云实验室在加速科学研究和拓宽自动化途径方面的未来潜力。本文还进一步探讨了该技术在当前状态下所面临的挑战,包括实验故障排除的困难、其并行化在学术环境中的有限适用性,以及与该方法相关的实验灵活性的潜在降低。
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.