Aldo Dal Prà, Lorenzo Genesio, Franco Miglietta, Federico Carotenuto, Silvia Baronti, Marco Moriondo, Antonino Greco, Nicola Morè, Laura Svanera, Alessandro Reboldi
{"title":"Salad Yields Under Agrivoltaics: A Field Test","authors":"Aldo Dal Prà, Lorenzo Genesio, Franco Miglietta, Federico Carotenuto, Silvia Baronti, Marco Moriondo, Antonino Greco, Nicola Morè, Laura Svanera, Alessandro Reboldi","doi":"10.52825/agripv.v2i.1009","DOIUrl":null,"url":null,"abstract":"Agrivoltaics is presented as a possible solution to the need for new sources of renewable energies, also responding to the increasing demand for feed/food and energy in a strongly efficient and sustainable manner. To this aim, agrivoltaics proposes to combine agricultural and renewable energy production on the same land using photovoltaic technology. The performance of this new production model strongly depends on the interaction between the two systems, agricultural and photovoltaic. In that sense, one of the most important aspects to consider are the effects of the shadows of the photovoltaic panels on the crop land. Overall, the experiment clearly indicated that a fourth cycle of escarole is possible under the PVs of agrivoltaics. Both fresh weight and size of the salad bowls were significantly increased by the shade provided by the PVs. Escarole appeared to be very tolerant to the shade and commercial yields were boosted, compared to full sun treatments, even under extended shade conditions. Such an effect can be likely explained by an overall amelioration of the water status in shaded plots. Therefore, a further study of the behavior of escarole under agrivoltaic conditions will be desirable.","PeriodicalId":517222,"journal":{"name":"AgriVoltaics Conference Proceedings","volume":"37 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriVoltaics Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/agripv.v2i.1009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Agrivoltaics is presented as a possible solution to the need for new sources of renewable energies, also responding to the increasing demand for feed/food and energy in a strongly efficient and sustainable manner. To this aim, agrivoltaics proposes to combine agricultural and renewable energy production on the same land using photovoltaic technology. The performance of this new production model strongly depends on the interaction between the two systems, agricultural and photovoltaic. In that sense, one of the most important aspects to consider are the effects of the shadows of the photovoltaic panels on the crop land. Overall, the experiment clearly indicated that a fourth cycle of escarole is possible under the PVs of agrivoltaics. Both fresh weight and size of the salad bowls were significantly increased by the shade provided by the PVs. Escarole appeared to be very tolerant to the shade and commercial yields were boosted, compared to full sun treatments, even under extended shade conditions. Such an effect can be likely explained by an overall amelioration of the water status in shaded plots. Therefore, a further study of the behavior of escarole under agrivoltaic conditions will be desirable.