Improved Land Use Efficiency Through Spectral Beam Splitting in Agrivoltaic Farms

Eshwar Ravishankar, Shir Esh, O. Rozenstein, Helena Vitoshkin, Abraham Kribus, G. Mittelman, Sanjeev Jakhar, Ricardo Hernandez
{"title":"Improved Land Use Efficiency Through Spectral Beam Splitting in Agrivoltaic Farms","authors":"Eshwar Ravishankar, Shir Esh, O. Rozenstein, Helena Vitoshkin, Abraham Kribus, G. Mittelman, Sanjeev Jakhar, Ricardo Hernandez","doi":"10.52825/agripv.v2i.997","DOIUrl":null,"url":null,"abstract":"Installing photovoltaic (PV) collectors above arable land (Agrivoltaics) can aid with the shortage of available land area for solar power generation and food production. Most open field agrivoltaics are based on opaque PV devices which absorb photosynthetically active radiation (PAR, 400-700 nm), reducing crop yield and increasing variability in light distribution across the field. This research evaluates the performance of spectral beam splitter integrated photovoltaic (BSIPV) modules using a PV performance model. A high percentage (66 %) of PAR incident on the spectral beam splitter is transmitted effectively to the plants, while the near infrared radiation (NIR, > 700 nm) is reflected to the adjacent bifacial opaque photovoltaic module to generate power. In the model, seven rows of modules were placed uniformly across the field at a height of four meters from the ground. Considering a cool season (November – March) in Yuma, Arizona, in a conventional opaque PV agrivoltaic farm received 43 % lower total daylight integral (TDLI) across the season in comparison to open field with a coefficient of variation (ratio of standard deviation to mean expressed in percentage) of 56 % in TDLI across the field. On the other hand, the BSIPV agrivoltaic farm limited the drop in TDLI to 7 % in comparison to open field and the coefficient of variation to 14 % across the field. Thus, BSIPV showed a 36 % improvement in TDLI relative to the conventional opaque PV agrivoltaic farm. The results of the current study justify further research on the proposed collector concept.","PeriodicalId":517222,"journal":{"name":"AgriVoltaics Conference Proceedings","volume":"16 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriVoltaics Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/agripv.v2i.997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Installing photovoltaic (PV) collectors above arable land (Agrivoltaics) can aid with the shortage of available land area for solar power generation and food production. Most open field agrivoltaics are based on opaque PV devices which absorb photosynthetically active radiation (PAR, 400-700 nm), reducing crop yield and increasing variability in light distribution across the field. This research evaluates the performance of spectral beam splitter integrated photovoltaic (BSIPV) modules using a PV performance model. A high percentage (66 %) of PAR incident on the spectral beam splitter is transmitted effectively to the plants, while the near infrared radiation (NIR, > 700 nm) is reflected to the adjacent bifacial opaque photovoltaic module to generate power. In the model, seven rows of modules were placed uniformly across the field at a height of four meters from the ground. Considering a cool season (November – March) in Yuma, Arizona, in a conventional opaque PV agrivoltaic farm received 43 % lower total daylight integral (TDLI) across the season in comparison to open field with a coefficient of variation (ratio of standard deviation to mean expressed in percentage) of 56 % in TDLI across the field. On the other hand, the BSIPV agrivoltaic farm limited the drop in TDLI to 7 % in comparison to open field and the coefficient of variation to 14 % across the field. Thus, BSIPV showed a 36 % improvement in TDLI relative to the conventional opaque PV agrivoltaic farm. The results of the current study justify further research on the proposed collector concept.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过农业光伏农场的分光光束提高土地利用效率
在耕地上安装光伏(PV)集热器(农用光伏)可以解决太阳能发电和粮食生产可用土地面积不足的问题。大多数露天农用光伏发电设备都是基于不透明的光伏装置,这种装置会吸收光合有效辐射(PAR,400-700 nm),从而降低作物产量,并增加田间光分布的变化。这项研究利用光伏性能模型评估了光谱分束器集成光伏(BSIPV)模块的性能。入射到光谱分束器上的 PAR 有很高的比例(66%)能有效地传输到植物上,而近红外辐射(NIR,> 700 nm)则被反射到相邻的双面不透明光伏组件上发电。在该模型中,七排组件均匀地放置在田间,距离地面四米高。考虑到亚利桑那州尤马的凉季(11 月至次年 3 月),传统的不透明光伏农业电站与露天电站相比,整个季节的日照总积分(TDLI)低 43%,整个电站的日照总积分变异系数(以百分比表示的标准偏差与平均值之比)为 56%。另一方面,BSIPV 农业光伏农场与露天农场相比,将 TDLI 的降幅限制在 7%,全场变异系数限制在 14%。因此,与传统的不透明光伏发电场相比,BSIPV 的 TDLI 提高了 36%。目前的研究结果证明,有必要对所提出的集热器概念进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of Light Interception by Crops under Solar Panels using PARbars Agrivoltaics in Germany - Status Quo and Future Developments Vertical Agrivoltaics System on Arable Crops in Central France: Feedback of the First Year of Operation New Legal Framework of Agrivoltaics in Germany Modelling Light Interception by Rows of Tall-Growing Crops in an Agri-PV System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1