Lesego Tabea Temane, Suprakas Sinha Ray, Jonathan Tersur Orasugh
{"title":"Review on Processing, Flame-Retardant Properties, and Applications of Polyethylene Composites with Graphene-Based Nanomaterials","authors":"Lesego Tabea Temane, Suprakas Sinha Ray, Jonathan Tersur Orasugh","doi":"10.1002/mame.202400104","DOIUrl":null,"url":null,"abstract":"<p>This paper presents recent developments in graphene-based nanomaterial (GNM)-containing flame-retardant (FR) polyethylene (PE) composites for advanced applications and introduces knowledge gaps and potential solutions. Various nanomaterials have been used to improve the FR properties of PEs. Among these, GNMs score highly because of their superior performance and multifunctional characteristics. By offering a holistic overview of the fundamentals of the FR characteristics of GNMs, the processing and characterization of PE/GNM composites, and the critical aspects related to the development of FR PE/GNM composites for advanced applications, this review provides insights into advances in this area as well as prospects. Furthermore, the kinetics of the FR characteristics of PE and PE/GNM composites are critically discussed in the context of how the FR properties of PE/GNM composites can be tailored by modifying either the surface of the GNM, PE or both, an area seldom discussed in the literature. Moreover, the FR performance of PE/GNM composites is compared with PE/Expandable Graphite (EG) composites because EG has been recognized as a highly efficient and eco-friendly intumescent FR. In summary, this review offers new insights into the design of advanced PE/GNM composites for automotive, construction, aerospace, and electronic packaging applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400104","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents recent developments in graphene-based nanomaterial (GNM)-containing flame-retardant (FR) polyethylene (PE) composites for advanced applications and introduces knowledge gaps and potential solutions. Various nanomaterials have been used to improve the FR properties of PEs. Among these, GNMs score highly because of their superior performance and multifunctional characteristics. By offering a holistic overview of the fundamentals of the FR characteristics of GNMs, the processing and characterization of PE/GNM composites, and the critical aspects related to the development of FR PE/GNM composites for advanced applications, this review provides insights into advances in this area as well as prospects. Furthermore, the kinetics of the FR characteristics of PE and PE/GNM composites are critically discussed in the context of how the FR properties of PE/GNM composites can be tailored by modifying either the surface of the GNM, PE or both, an area seldom discussed in the literature. Moreover, the FR performance of PE/GNM composites is compared with PE/Expandable Graphite (EG) composites because EG has been recognized as a highly efficient and eco-friendly intumescent FR. In summary, this review offers new insights into the design of advanced PE/GNM composites for automotive, construction, aerospace, and electronic packaging applications.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.