Achieving a High-Responsivity and Fast-Response-Speed Solar-Blind Photodetector for Underwater Optical Communication via AlGaN/AlN/GaN Heterojunction Nanowires

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-22 DOI:10.1021/acsaelm.4c00636
Junjun Xue, Saisai Wang, Jiaming Tong, Guofeng Yang, Irina Parkhomenko, Fadei Komarov, Yu Liu, Qing Cai*, Jin Wang* and Ting Zhi*, 
{"title":"Achieving a High-Responsivity and Fast-Response-Speed Solar-Blind Photodetector for Underwater Optical Communication via AlGaN/AlN/GaN Heterojunction Nanowires","authors":"Junjun Xue,&nbsp;Saisai Wang,&nbsp;Jiaming Tong,&nbsp;Guofeng Yang,&nbsp;Irina Parkhomenko,&nbsp;Fadei Komarov,&nbsp;Yu Liu,&nbsp;Qing Cai*,&nbsp;Jin Wang* and Ting Zhi*,&nbsp;","doi":"10.1021/acsaelm.4c00636","DOIUrl":null,"url":null,"abstract":"<p >Realizing energy-efficient devices with sustainable and independent operation is a large challenge for next-generation photodetection systems in various environments. In this study, we present a high-response and fast-speed ultraviolet photodetector (UV PD) based on the p-AlGaN/AlN/n-GaN nanowires (NWs) heterojunction, which could operate at a 0 V bias for underwater photodetection through the photoelectrochemical (PEC) process. Compared to the UV PD without AlN insertion, the detection performance would be increased to 3–5 times for underwater solar-blind UV detection under the effect of heterostructure band engineering to prevent carrier drift and recombination at 0 V bias under 255 nm illumination. Furthermore, the photoresponsivity and response speed can be further improved by a surface modification strategy to adjust the carrier transport between the nitride semiconductor and electrolyte. These promising results lay a solid foundation for the development of III-nitride high-efficiency, self-powered PEC photosynthesis devices in the future.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00636","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Realizing energy-efficient devices with sustainable and independent operation is a large challenge for next-generation photodetection systems in various environments. In this study, we present a high-response and fast-speed ultraviolet photodetector (UV PD) based on the p-AlGaN/AlN/n-GaN nanowires (NWs) heterojunction, which could operate at a 0 V bias for underwater photodetection through the photoelectrochemical (PEC) process. Compared to the UV PD without AlN insertion, the detection performance would be increased to 3–5 times for underwater solar-blind UV detection under the effect of heterostructure band engineering to prevent carrier drift and recombination at 0 V bias under 255 nm illumination. Furthermore, the photoresponsivity and response speed can be further improved by a surface modification strategy to adjust the carrier transport between the nitride semiconductor and electrolyte. These promising results lay a solid foundation for the development of III-nitride high-efficiency, self-powered PEC photosynthesis devices in the future.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 AlGaN/AlN/GaN 异质结纳米线为水下光通信实现高响应率和快速响应速度的太阳盲光电探测器
实现可持续独立运行的高能效器件是下一代光电检测系统在各种环境中面临的巨大挑战。在这项研究中,我们提出了一种基于 p-AlGaN/AlN/n-GaN 纳米线(NWs)异质结的高响应、高速紫外光光电探测器(UV PD),它可以在 0 V 偏置下工作,通过光电化学(PEC)过程进行水下光电探测。在异质结构能带工程的作用下,与未插入 AlN 的紫外 PD 相比,在 255 纳米光照下的 0 V 偏压条件下,为防止载流子漂移和重组,水下日光盲紫外检测的检测性能将提高 3-5 倍。此外,通过表面改性策略调整氮化物半导体和电解质之间的载流子传输,还能进一步提高光致发光率和响应速度。这些充满希望的结果为未来开发 III 氮化物高效自供电 PEC 光合作用器件奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Intrinsic Thermomechanical Properties of Freestanding TEOS-SiO2 Thin Films Depending on Thickness Sea Urchin-Like NiO-CoO Heterostructure as High-Energy Supercapattery Electrode: Laboratory Prototype to Field Application of Pouch-type Device Recent Studies on Solid–Liquid Contact Electrification Piezoelectric and Triboelectric Contributions by Aromatic Hyperbranched Polyesters of Second-Generation/PVDF Nanofiber-Based Nanogenerators for Energy Harvesting and Wearable Electronics Fingerprint-Mimicking, ZIF-67 Decorated, Triboelectric Nanogenerator for IoT Cloud-Supported Self-Powered Smart Glove for Paralyzed Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1