3D-printed weight holders design and testing in mouse models of spinal cord injury

Sara De Vincentiis, Francesca Merighi, Peter Blümler, Jose Gustavo De La Ossa Guerra, Mariachiara Di Caprio, Marco Onorati, Marco Mainardi, V. Raffa, Marina Carbone
{"title":"3D-printed weight holders design and testing in mouse models of spinal cord injury","authors":"Sara De Vincentiis, Francesca Merighi, Peter Blümler, Jose Gustavo De La Ossa Guerra, Mariachiara Di Caprio, Marco Onorati, Marco Mainardi, V. Raffa, Marina Carbone","doi":"10.3389/fddev.2024.1397056","DOIUrl":null,"url":null,"abstract":"This paper details the comprehensive design and prototyping of a 3D-printed wearable device tailored for mouse models which addresses the need for non-invasive applications in spinal cord studies and therapeutic treatments. Our work was prompted by the increasing demand for wearable devices in preclinical research on freely behaving rodent models of spinal cord injury. We present an innovative solution that employs compliant 3D-printed structures for stable device placement on the backs of both healthy and spinal cord-injured mice. In our trial, the device was represented by two magnets that applied passive magnetic stimulation to the injury site. This device was designed to be combined with the use of magnetic nanoparticles to render neurons or neural cells sensitive to an exogenous magnetic field, resulting in the stimulation of axon growth in response to a pulling force. We show different design iterations, emphasizing the challenges faced and the solutions proposed during the design process. The iterative design process involved multiple phases, from the magnet holder (MH) to the wearable device configurations. The latter included different approaches: a “Fitbit”, “Belt”, “Bib”, and ultimately a “Cape”. Each design iteration was accompanied by a testing protocol involving healthy and injured mice, with qualitative assessments focusing on animal wellbeing. Follow-up lasted for at least 21 consecutive days, thus allowing animal welfare to be accurately monitored. The final Cape design was our best compromise between the need for a thin structure that would not hinder movement and the resistance required to maintain the structure at the correct position while withstanding biting and mechanical stress. The detailed account of the iterative design process and testing procedures provides valuable insights for researchers and practitioners engaged in the development of wearable devices for mice, particularly in the context of spinal cord studies and therapeutic treatments. Finally, in addition to describing the design of a 3D-printed wearable holder, we also outline some general guidelines for the design of wearable devices.","PeriodicalId":73079,"journal":{"name":"Frontiers in drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddev.2024.1397056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details the comprehensive design and prototyping of a 3D-printed wearable device tailored for mouse models which addresses the need for non-invasive applications in spinal cord studies and therapeutic treatments. Our work was prompted by the increasing demand for wearable devices in preclinical research on freely behaving rodent models of spinal cord injury. We present an innovative solution that employs compliant 3D-printed structures for stable device placement on the backs of both healthy and spinal cord-injured mice. In our trial, the device was represented by two magnets that applied passive magnetic stimulation to the injury site. This device was designed to be combined with the use of magnetic nanoparticles to render neurons or neural cells sensitive to an exogenous magnetic field, resulting in the stimulation of axon growth in response to a pulling force. We show different design iterations, emphasizing the challenges faced and the solutions proposed during the design process. The iterative design process involved multiple phases, from the magnet holder (MH) to the wearable device configurations. The latter included different approaches: a “Fitbit”, “Belt”, “Bib”, and ultimately a “Cape”. Each design iteration was accompanied by a testing protocol involving healthy and injured mice, with qualitative assessments focusing on animal wellbeing. Follow-up lasted for at least 21 consecutive days, thus allowing animal welfare to be accurately monitored. The final Cape design was our best compromise between the need for a thin structure that would not hinder movement and the resistance required to maintain the structure at the correct position while withstanding biting and mechanical stress. The detailed account of the iterative design process and testing procedures provides valuable insights for researchers and practitioners engaged in the development of wearable devices for mice, particularly in the context of spinal cord studies and therapeutic treatments. Finally, in addition to describing the design of a 3D-printed wearable holder, we also outline some general guidelines for the design of wearable devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脊髓损伤小鼠模型中的 3D 打印配重架设计与测试
本文详细介绍了为小鼠模型量身定制的 3D 打印可穿戴设备的综合设计和原型制作,该设备可满足脊髓研究和治疗中对无创应用的需求。在脊髓损伤自由行为啮齿动物模型的临床前研究中,对可穿戴设备的需求日益增长,这促使我们开展了这项工作。我们提出了一种创新的解决方案,利用顺应性 3D 打印结构将设备稳定地放置在健康小鼠和脊髓损伤小鼠的背部。在我们的试验中,该装置由两块磁铁组成,对损伤部位施加被动磁刺激。该装置的设计目的是结合使用磁性纳米粒子,使神经元或神经细胞对外源磁场敏感,从而在拉力作用下刺激轴突生长。我们展示了不同的设计迭代,强调了设计过程中面临的挑战和提出的解决方案。迭代设计过程涉及多个阶段,从磁铁支架(MH)到可穿戴设备配置。后者包括不同的方法:"Fitbit"、"Belt"、"Bib "以及最终的 "Cape"。每次设计迭代都伴随着一个测试方案,测试对象包括健康和受伤的小鼠,定性评估侧重于动物的健康状况。随访至少连续 21 天,以便准确监测动物福利。Cape 的最终设计是我们在不妨碍运动的薄结构需求与保持结构正确位置所需的阻力(同时承受咬合和机械应力)之间的最佳折衷方案。对迭代设计过程和测试程序的详细介绍为从事小鼠可穿戴设备开发的研究人员和从业人员提供了宝贵的见解,特别是在脊髓研究和治疗方面。最后,除了介绍三维打印可穿戴支架的设计外,我们还概述了可穿戴设备设计的一些一般准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies and delivery systems for cell-based therapy in autoimmunity Preliminary results on novel adjuvant combinations suggest enhanced immunogenicity of whole inactivated pandemic influenza vaccines Induction of P-glycoprotein overexpression in brain endothelial cells as a model to study blood-brain barrier efflux transport SpheroMold: modernizing the hanging drop method for spheroid culture 3D-printed weight holders design and testing in mouse models of spinal cord injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1