Multifidelity-based Gaussian process for quasi-site-specific probabilistic prediction of soil properties

IF 3 3区 工程技术 Q2 ENGINEERING, GEOLOGICAL Canadian Geotechnical Journal Pub Date : 2024-05-22 DOI:10.1139/cgj-2023-0641
Geng-Fu He, Pin Zhang, Zhen-Yu Yin, Siang Huat Goh
{"title":"Multifidelity-based Gaussian process for quasi-site-specific probabilistic prediction of soil properties","authors":"Geng-Fu He, Pin Zhang, Zhen-Yu Yin, Siang Huat Goh","doi":"10.1139/cgj-2023-0641","DOIUrl":null,"url":null,"abstract":"Conventional empirical equations for soil properties prediction tend to be site-specific, exhibiting poor reliability and accuracy. Meanwhile, alternative data-driven methods require large datasets for training. To address these issues, this study proposed a novel multifidelity residual neural-network-based Gaussian process (MR-NNGP) modelling framework. A soil property low-fidelity (LF) prediction model is first trained using abundant LF data collected from worldwide sites for generating preliminary estimation. A high-fidelity (HF) model is subsequently trained on sparse HF data from the specific site of interest for calibrating the LF model to make quasi-site-specific predictions. An infinitely wide NN-inspired NNGP is adopted as the baseline algorithm for training LF and HF models. The compression index of clays is selected as an example to examine the capability of the proposed MR-NNGP. The results indicate that the compression index of clays can be well captured by MR-NNGP, exhibiting superior accuracy and reliability compared with one-shot training without using MR modelling and other baseline algorithms such as GP. The MR-NNGP framework alleviates data dependency and improves model performance through hierarchical modelling on relatively simple correlations using a superior algorithm. Unified LF data and efficient hyper-parameter optimization indicate the flexibility for broader applications in various sites worldwide.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0641","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional empirical equations for soil properties prediction tend to be site-specific, exhibiting poor reliability and accuracy. Meanwhile, alternative data-driven methods require large datasets for training. To address these issues, this study proposed a novel multifidelity residual neural-network-based Gaussian process (MR-NNGP) modelling framework. A soil property low-fidelity (LF) prediction model is first trained using abundant LF data collected from worldwide sites for generating preliminary estimation. A high-fidelity (HF) model is subsequently trained on sparse HF data from the specific site of interest for calibrating the LF model to make quasi-site-specific predictions. An infinitely wide NN-inspired NNGP is adopted as the baseline algorithm for training LF and HF models. The compression index of clays is selected as an example to examine the capability of the proposed MR-NNGP. The results indicate that the compression index of clays can be well captured by MR-NNGP, exhibiting superior accuracy and reliability compared with one-shot training without using MR modelling and other baseline algorithms such as GP. The MR-NNGP framework alleviates data dependency and improves model performance through hierarchical modelling on relatively simple correlations using a superior algorithm. Unified LF data and efficient hyper-parameter optimization indicate the flexibility for broader applications in various sites worldwide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多保真度的高斯过程用于准特定地点土壤特性的概率预测
传统的土壤特性预测经验公式往往针对具体地点,可靠性和准确性较差。同时,其他数据驱动方法需要大量数据集进行训练。为解决这些问题,本研究提出了一种新型的基于残差神经网络的高斯过程(MR-NNGP)建模框架。首先,利用从全球各地收集的大量 LF 数据训练土壤属性低保真(LF)预测模型,以生成初步估算。随后,利用特定相关地点的稀疏高频数据训练高保真(HF)模型,以校准低保真模型,从而进行准特定地点预测。训练 LF 和 HF 模型的基准算法采用了无限宽 NN 启发的 NNGP。以粘土的压缩指数为例,考察了所提出的 MR-NNGP 的能力。结果表明,MR-NNGP 可以很好地捕捉粘土的压缩指数,与不使用 MR 建模的单次训练和其他基线算法(如 GP)相比,MR-NNGP 表现出更高的精度和可靠性。MR-NNGP 框架减轻了数据依赖性,并通过使用卓越算法对相对简单的相关性进行分层建模,提高了模型性能。统一的 LF 数据和高效的超参数优化表明,它可以灵活地广泛应用于全球各个地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Geotechnical Journal
Canadian Geotechnical Journal 地学-地球科学综合
CiteScore
7.20
自引率
5.60%
发文量
163
审稿时长
7.5 months
期刊介绍: The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling. Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.
期刊最新文献
Effect of microwave heating on rock damage and energy evolution Correction: Experimental study on the shear mechanical behavior of ice-rich debris–rock interface: effects of temperature, stress, and ice content Estimating relative density from shallow depth CPTs in normally consolidated and overconsolidated siliceous sand Kinematic response of floating single piles in saturated and nearly-saturated soil to P-waves Experimental investigation on mechanical behavior of natural soft clay by true triaxial tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1