{"title":"Estimating relative density from shallow depth CPTs in normally consolidated and overconsolidated siliceous sand","authors":"M. R. Jensen","doi":"10.1139/cgj-2024-0136","DOIUrl":null,"url":null,"abstract":"Current interpretation of relative density (Dr) based on CPT end resistance (qc) data in sand relies on empirical expressions established from calibration chamber studies for which a deep failure penetration mechanism is attained. These expressions are mainly based on stress normalised qc data. Previous studies have highlighted the importance of performing the normalisation procedure with respect to the mean effective stress (p') in overconsolidated (OC) sand deposits instead of the vertical effective stress (σ'v) that has been used in normally consolidated (NC) deposits. Due to a large variation in the coefficient of earth pressure at rest (K0), on which p' depends, in the uppermost (3-5) m of OC sand, a recent study has demonstrated a rigorous unified approach for estimating a varying K0 with depth. However, the surficial shallow failure penetration effects are not accounted for, and consequently, interpretation of the upper (0.5-1.5) m of sand is still erroneous. This depth range is very important for low stress geotechnical applications such as offshore flowlines and mudmats. With a reinterpretation of previously published data, a new global model is presented that enables estimation of Dr from shallow CPTs in siliceous sand by taking into account both the shallow failure penetration effects (important in the uppermost 0.5-1.5 m) as well as the varying K0 with depth for OC sand (important in the uppermost 3-5 m).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"14 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2024-0136","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Current interpretation of relative density (Dr) based on CPT end resistance (qc) data in sand relies on empirical expressions established from calibration chamber studies for which a deep failure penetration mechanism is attained. These expressions are mainly based on stress normalised qc data. Previous studies have highlighted the importance of performing the normalisation procedure with respect to the mean effective stress (p') in overconsolidated (OC) sand deposits instead of the vertical effective stress (σ'v) that has been used in normally consolidated (NC) deposits. Due to a large variation in the coefficient of earth pressure at rest (K0), on which p' depends, in the uppermost (3-5) m of OC sand, a recent study has demonstrated a rigorous unified approach for estimating a varying K0 with depth. However, the surficial shallow failure penetration effects are not accounted for, and consequently, interpretation of the upper (0.5-1.5) m of sand is still erroneous. This depth range is very important for low stress geotechnical applications such as offshore flowlines and mudmats. With a reinterpretation of previously published data, a new global model is presented that enables estimation of Dr from shallow CPTs in siliceous sand by taking into account both the shallow failure penetration effects (important in the uppermost 0.5-1.5 m) as well as the varying K0 with depth for OC sand (important in the uppermost 3-5 m).
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico